A simplex differential evolution algorithm: Development and applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092945" target="_blank" >RIV/61989100:27240/12:86092945 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1177/0142331211403032" target="_blank" >http://dx.doi.org/10.1177/0142331211403032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0142331211403032" target="_blank" >10.1177/0142331211403032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A simplex differential evolution algorithm: Development and applications
Popis výsledku v původním jazyce
Population-based heuristic optimization methods like differential evolution (DE) depend largely on the generation of the initial population. The initial population not only affects the search for several iterations but often also has an influence on thefinal solution. The conventional method for generating the initial population is the use of computer-generated pseudo-random numbers, which may not be very effective. In the present study, we have investigated the potential of generating the initial population by integrating the non-linear simplex method of Nelder and Mead with pseudo-random numbers in a DE algorithm. The resulting algorithm named the non-linear simplex DE is tested on a set of 20 benchmark problems with box constraints and two real life problems. Numerical results show that the proposed scheme for generating the random numbers significantly improves the performance of DE in terms of fitness function value, convergence rate and average CPU time. The Author(s) 2011.
Název v anglickém jazyce
A simplex differential evolution algorithm: Development and applications
Popis výsledku anglicky
Population-based heuristic optimization methods like differential evolution (DE) depend largely on the generation of the initial population. The initial population not only affects the search for several iterations but often also has an influence on thefinal solution. The conventional method for generating the initial population is the use of computer-generated pseudo-random numbers, which may not be very effective. In the present study, we have investigated the potential of generating the initial population by integrating the non-linear simplex method of Nelder and Mead with pseudo-random numbers in a DE algorithm. The resulting algorithm named the non-linear simplex DE is tested on a set of 20 benchmark problems with box constraints and two real life problems. Numerical results show that the proposed scheme for generating the random numbers significantly improves the performance of DE in terms of fitness function value, convergence rate and average CPU time. The Author(s) 2011.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the Institute of Measurement and Control
ISSN
0142-3312
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
691-704
Kód UT WoS článku
000306556100004
EID výsledku v databázi Scopus
—