Constructing Ordinary Sum Differential Equations using Polynomial Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86090323" target="_blank" >RIV/61989100:27240/14:86090323 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86090323
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0020025514005969" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025514005969</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2014.05.036" target="_blank" >10.1016/j.ins.2014.05.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constructing Ordinary Sum Differential Equations using Polynomial Networks
Popis výsledku v původním jazyce
Data relations can define general sum partial differential equations of a composite function additive derivative model. Time-series data observations can analogously describe an ordinary sum differential equation with time derivatives, which is possibleto be solved using partial derivative term substitutions of time-dependent series. Differential polynomial neural network is a new type of neural network, which constructs and substitutes for an unknown general partial differential equation from data observations, developed by the author. It generates sum series of convergent partial polynomial derivative terms, which can describe an unknown complex function time-series. This type of non-linear regression decomposes a system model, described by the general differential equation, into many partial low order derivative specifications of selected relative sum terms. Common soft-computing techniques in general can apply input variables of only absolute interval values of a specific data ran
Název v anglickém jazyce
Constructing Ordinary Sum Differential Equations using Polynomial Networks
Popis výsledku anglicky
Data relations can define general sum partial differential equations of a composite function additive derivative model. Time-series data observations can analogously describe an ordinary sum differential equation with time derivatives, which is possibleto be solved using partial derivative term substitutions of time-dependent series. Differential polynomial neural network is a new type of neural network, which constructs and substitutes for an unknown general partial differential equation from data observations, developed by the author. It generates sum series of convergent partial polynomial derivative terms, which can describe an unknown complex function time-series. This type of non-linear regression decomposes a system model, described by the general differential equation, into many partial low order derivative specifications of selected relative sum terms. Common soft-computing techniques in general can apply input variables of only absolute interval values of a specific data ran
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
Volume 281
Číslo periodika v rámci svazku
Multimedia Modeling
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
"462-477"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—