Complex System Modeling with General Differential Equations solved by means of Polynomial Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095954" target="_blank" >RIV/61989100:27240/15:86095954 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86095954
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-27644-1_7" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-27644-1_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27644-1_7" target="_blank" >10.1007/978-3-319-27644-1_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complex System Modeling with General Differential Equations solved by means of Polynomial Networks
Popis výsledku v původním jazyce
Differential equations can describe physical and natural systems, which be-havior only explicit exact functions are not able to model. Complex dynamic systems are characterized by a high variability of time-fluctuating data rela-tions of a great number of state variables. Systems of differential equations can describe them but they are too unstable to be modeled unambiguously by means of standard soft computing techniques. In some cases the correct form of a differential equation might absent or it is difficult to express. Dif-ferential polynomial neural network is a new neural network type, which forms and solves an unknown general partial differential equation of an ap-proximation of a searched function, described by discrete data observations. It generates convergent sum series of relative partial polynomial derivative terms, which can substitute for a partial or/and ordinary differential equation solution. This type of non-linear regression decomposes a system model, de-scribed by
Název v anglickém jazyce
Complex System Modeling with General Differential Equations solved by means of Polynomial Networks
Popis výsledku anglicky
Differential equations can describe physical and natural systems, which be-havior only explicit exact functions are not able to model. Complex dynamic systems are characterized by a high variability of time-fluctuating data rela-tions of a great number of state variables. Systems of differential equations can describe them but they are too unstable to be modeled unambiguously by means of standard soft computing techniques. In some cases the correct form of a differential equation might absent or it is difficult to express. Dif-ferential polynomial neural network is a new neural network type, which forms and solves an unknown general partial differential equation of an ap-proximation of a searched function, described by discrete data observations. It generates convergent sum series of relative partial polynomial derivative terms, which can substitute for a partial or/and ordinary differential equation solution. This type of non-linear regression decomposes a system model, de-scribed by
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 423
ISBN
978-3-319-27642-7
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
10
Strana od-do
63-67
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Issyk Kul
Datum konání akce
25. 8. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—