Analysis of fixing nodes used in generalized inverse computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092519" target="_blank" >RIV/61989100:27240/14:86092519 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.15598/aeee.v12i2.1020" target="_blank" >http://dx.doi.org/10.15598/aeee.v12i2.1020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v12i2.1020" target="_blank" >10.15598/aeee.v12i2.1020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of fixing nodes used in generalized inverse computation
Popis výsledku v původním jazyce
In various fields of numerical mathematics, there arises the need to compute a generalized inverse of a symmetric positive semidefinite matrix, for example in the solution of contact problems. Systems with semidefinite matrices can be solved by standarddirect methods for the solution of systems with positive definite matrices adapted to the solution of systems with only positive semidefinite matrix. One of the possibilities is a modification of Cholesky decomposition using so called fixing nodes, whichis presented in this paper with particular emphasise on proper definition of fixing nodes. The generalised inverse algorithm consisting in Cholesky decomposition with usage of fixing nodes is adopted from paper [1]. In [1], authors choose the fixing nodes using Perron vector of an adjacency matrix of the graph which is only a sub-optimal choice. Their choice is discussed in this paper together with other possible candidates on fixing node. Several numerical experiments including all can
Název v anglickém jazyce
Analysis of fixing nodes used in generalized inverse computation
Popis výsledku anglicky
In various fields of numerical mathematics, there arises the need to compute a generalized inverse of a symmetric positive semidefinite matrix, for example in the solution of contact problems. Systems with semidefinite matrices can be solved by standarddirect methods for the solution of systems with positive definite matrices adapted to the solution of systems with only positive semidefinite matrix. One of the possibilities is a modification of Cholesky decomposition using so called fixing nodes, whichis presented in this paper with particular emphasise on proper definition of fixing nodes. The generalised inverse algorithm consisting in Cholesky decomposition with usage of fixing nodes is adopted from paper [1]. In [1], authors choose the fixing nodes using Perron vector of an adjacency matrix of the graph which is only a sub-optimal choice. Their choice is discussed in this paper together with other possible candidates on fixing node. Several numerical experiments including all can
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
123-130
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—