Feature selection and ensemble of regression models for predicting the protein macromolecule dissolution profile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092529" target="_blank" >RIV/61989100:27240/14:86092529 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092529
Výsledek na webu
<a href="http://dx.doi.org/10.1109/NaBIC.2014.6921864" target="_blank" >http://dx.doi.org/10.1109/NaBIC.2014.6921864</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NaBIC.2014.6921864" target="_blank" >10.1109/NaBIC.2014.6921864</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature selection and ensemble of regression models for predicting the protein macromolecule dissolution profile
Popis výsledku v původním jazyce
Predicting the dissolution rate of proteins plays a significant role in pharmaceutical/medical applications. The rate of dissolution of Poly Lactic-co-Glycolic Acid (PLGA) micro- and nanoparticles is influenced by several factors. Considering all factorsleads to a dataset with three hundred features, making the prediction difficult and inaccurate. Our present study consists of three phases. Firstly, dimensionality reduction techniques are applied in order to simplify the task and eliminate irrelevant and redundant attributes. Subsequently, a heterogeneous pool of several classical regression algorithms is created and evaluated. Regression algorithms in the pool are independently trained to identify the problem at hand. Finally, we test several ensemble methods in order to elevate the accuracy of the prediction. The Evolutionary Weighted Ensemble methodproposed in this paper offered the lowest RMSE and significantly outperformed competing classical algorithms and other ensemble techniq
Název v anglickém jazyce
Feature selection and ensemble of regression models for predicting the protein macromolecule dissolution profile
Popis výsledku anglicky
Predicting the dissolution rate of proteins plays a significant role in pharmaceutical/medical applications. The rate of dissolution of Poly Lactic-co-Glycolic Acid (PLGA) micro- and nanoparticles is influenced by several factors. Considering all factorsleads to a dataset with three hundred features, making the prediction difficult and inaccurate. Our present study consists of three phases. Firstly, dimensionality reduction techniques are applied in order to simplify the task and eliminate irrelevant and redundant attributes. Subsequently, a heterogeneous pool of several classical regression algorithms is created and evaluated. Regression algorithms in the pool are independently trained to identify the problem at hand. Finally, we test several ensemble methods in order to elevate the accuracy of the prediction. The Evolutionary Weighted Ensemble methodproposed in this paper offered the lowest RMSE and significantly outperformed competing classical algorithms and other ensemble techniq
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NaBIC 2014 ; CASoN 2014 : July 30-31, Porto, Portugal
ISBN
978-1-4799-5937-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
121-126
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Porto
Datum konání akce
30. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—