Dimensionality reduction, and function approximation of poly (lactic-co-glycolic acid) micro-and nanoparticle dissolution rate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095763" target="_blank" >RIV/61989100:27240/15:86095763 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86095763 RIV/61989100:27730/15:86095763
Výsledek na webu
<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327564/" target="_blank" >http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327564/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2147/IJN.S71847" target="_blank" >10.2147/IJN.S71847</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dimensionality reduction, and function approximation of poly (lactic-co-glycolic acid) micro-and nanoparticle dissolution rate
Popis výsledku v původním jazyce
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regressionalgorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method o
Název v anglickém jazyce
Dimensionality reduction, and function approximation of poly (lactic-co-glycolic acid) micro-and nanoparticle dissolution rate
Popis výsledku anglicky
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regressionalgorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Nanomedicine
ISSN
1178-2013
e-ISSN
—
Svazek periodika
2015
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NZ - Nový Zéland
Počet stran výsledku
1129
Strana od-do
1119
Kód UT WoS článku
000348985600001
EID výsledku v databázi Scopus
2-s2.0-84922363645