A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092554" target="_blank" >RIV/61989100:27240/14:86092554 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092554
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_16" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_16" target="_blank" >10.1007/978-3-319-08156-4_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems
Popis výsledku v původním jazyce
Over the past few decades, metaheuristics have been emerged to combine basic heuristic techniques in higher level frameworks to explore a search space in an efficient and an effective way. Particle swarm optimization (PSO) is one of the most important method in meta- heuristics methods, which is used for solving unconstrained global optimization prblems. In this paper, a new hybrid PSO algorithm is combined with variable neighborhood search (VNS) algorithm in order to search for the global optimal solutions for unconstrained global optimization problems. The proposed algorithm is called a hybrid particle swarm optimization with a variable neighborhood search algorithm (HPSOVNS). HPSOVNS aims to combine the PSO algorithm with its capability of making wide exploration and deep exploitation and the VNS algorithm as a local search algorithm to refine the overall best solution found so far in each iteration. In order to evaluate the performance of HPSOVNS, we compare its performance on nine different kinds of test benchmark functions with four particle swarm optimization based algorithms with different varieties. The results show that HPSOVNS algorithm achieves better performance and faster than the other algorithms. Springer International Publishing Switzerland 2014.
Název v anglickém jazyce
A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems
Popis výsledku anglicky
Over the past few decades, metaheuristics have been emerged to combine basic heuristic techniques in higher level frameworks to explore a search space in an efficient and an effective way. Particle swarm optimization (PSO) is one of the most important method in meta- heuristics methods, which is used for solving unconstrained global optimization prblems. In this paper, a new hybrid PSO algorithm is combined with variable neighborhood search (VNS) algorithm in order to search for the global optimal solutions for unconstrained global optimization problems. The proposed algorithm is called a hybrid particle swarm optimization with a variable neighborhood search algorithm (HPSOVNS). HPSOVNS aims to combine the PSO algorithm with its capability of making wide exploration and deep exploitation and the VNS algorithm as a local search algorithm to refine the overall best solution found so far in each iteration. In order to evaluate the performance of HPSOVNS, we compare its performance on nine different kinds of test benchmark functions with four particle swarm optimization based algorithms with different varieties. The results show that HPSOVNS algorithm achieves better performance and faster than the other algorithms. Springer International Publishing Switzerland 2014.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 303
ISBN
978-3-319-08155-7
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
10
Strana od-do
151-160
Název nakladatele
Springer-Verlag Berlin Heidelberg
Místo vydání
Berlin Heidelberg
Místo konání akce
Ostrava
Datum konání akce
23. 6. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000342841800016