A novel-weighted rough set-based meta learning for ozone day prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092813" target="_blank" >RIV/61989100:27240/14:86092813 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092813
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel-weighted rough set-based meta learning for ozone day prediction
Popis výsledku v původním jazyce
Nowadays, classifier combination methodsreceives great attention from machine learning researchers. It is a powerful tool to improve the accuracy of classifiers. This approach has become increasingly interesting, especially for real-world problems, whichare often characterized by their imbalanced nature. The unbalanced distribution of data leads to poor performance of most of the conventional machine learning techniques. In this paper, we propose a novel weighted rough set as a Meta classifier framework for 14 classifiers to find the smallest and optimal ensemble, which maximize the overall ensemble accuracy. We propose a new entropy-based method to compute the weight of each classifier. Each classifier assigns a weight based on its contribution to classification accuracy. Thanks to the powerful reduct technique in rough set, this guarantees high diversity of the produced reduct ensembles. The higher diversity between the core classifiers has a positive impact on the performance of mi
Název v anglickém jazyce
A novel-weighted rough set-based meta learning for ozone day prediction
Popis výsledku anglicky
Nowadays, classifier combination methodsreceives great attention from machine learning researchers. It is a powerful tool to improve the accuracy of classifiers. This approach has become increasingly interesting, especially for real-world problems, whichare often characterized by their imbalanced nature. The unbalanced distribution of data leads to poor performance of most of the conventional machine learning techniques. In this paper, we propose a novel weighted rough set as a Meta classifier framework for 14 classifiers to find the smallest and optimal ensemble, which maximize the overall ensemble accuracy. We propose a new entropy-based method to compute the weight of each classifier. Each classifier assigns a weight based on its contribution to classification accuracy. Thanks to the powerful reduct technique in rough set, this guarantees high diversity of the produced reduct ensembles. The higher diversity between the core classifiers has a positive impact on the performance of mi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica Hungarica
ISSN
1785-8860
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
20
Strana od-do
59-78
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—