A Better Infected Hosts Detection Combining Ensemble Learning and Threat Intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00348181" target="_blank" >RIV/68407700:21230/19:00348181 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-48325-8_23" target="_blank" >https://doi.org/10.1007/978-3-030-48325-8_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48325-8_23" target="_blank" >10.1007/978-3-030-48325-8_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Better Infected Hosts Detection Combining Ensemble Learning and Threat Intelligence
Popis výsledku v původním jazyce
Ensemble learning techniques have been successfully proposed and used to improve threats detection in cybersecurity. These techniques usually improve the detection results by combining algorithms that together have less errors. However there has not been any ensemble learning algorithm used to classify network flows when several methods are used to give individual detections for each of the flows. The state of the art in the use of ensemble learning techniques was analyzed to find an alternative for the current intrusion detection mechanisms. This research proposes to incorporate ensemble learning to the Stratosphere Linux IPS (SLIPS), a behavioral-based intrusion detection and prevention system that uses machine learning algorithms to detect malicious behaviors. Our ensembling method is used to obtain better results, taking advantage of the benefits of SLIPS' classifiers and modules. A contribution of our method is to extend the ensembling techniques by considering Threat Intelligence blacklists feeds as part of the detections. We present the results of the first stage of this project, i.e. ensemble learning algorithms to classify individual flows when they have multiple labels. on the other hand we also present the results corresponding to the second stage of our project, i.e. the detection of groups of flows going to the same destination IP.
Název v anglickém jazyce
A Better Infected Hosts Detection Combining Ensemble Learning and Threat Intelligence
Popis výsledku anglicky
Ensemble learning techniques have been successfully proposed and used to improve threats detection in cybersecurity. These techniques usually improve the detection results by combining algorithms that together have less errors. However there has not been any ensemble learning algorithm used to classify network flows when several methods are used to give individual detections for each of the flows. The state of the art in the use of ensemble learning techniques was analyzed to find an alternative for the current intrusion detection mechanisms. This research proposes to incorporate ensemble learning to the Stratosphere Linux IPS (SLIPS), a behavioral-based intrusion detection and prevention system that uses machine learning algorithms to detect malicious behaviors. Our ensembling method is used to obtain better results, taking advantage of the benefits of SLIPS' classifiers and modules. A contribution of our method is to extend the ensembling techniques by considering Threat Intelligence blacklists feeds as part of the detections. We present the results of the first stage of this project, i.e. ensemble learning algorithms to classify individual flows when they have multiple labels. on the other hand we also present the results corresponding to the second stage of our project, i.e. the detection of groups of flows going to the same destination IP.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CACIC 2019: 25th Argentine Congress of Computer Science
ISBN
978-3-030-48324-1
ISSN
1865-0929
e-ISSN
—
Počet stran výsledku
12
Strana od-do
354-365
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Rio Cuarto
Datum konání akce
14. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—