Advanced Temporal-Difference Learning for Intrusion Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86094771" target="_blank" >RIV/61989100:27240/15:86094771 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ifacol.2015.07.005" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2015.07.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2015.07.005" target="_blank" >10.1016/j.ifacol.2015.07.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Temporal-Difference Learning for Intrusion Detection
Popis výsledku v původním jazyce
Nowadays intrusion detection for cyber security is the dynamically researched area. The main purpose of the intrusion detection is to distinguish normal usage of analyzed system from different forms of misuses and abnormal behaviors. The big amount of intrusion detection approaches such as soft computing and machine learning algorithms was made. In spite of visible progress, there are still many opportunities to improve state-of-the-art techniques. This paper presents the new intrusion detection technique that is based on temporal-difference learning for Markov decision processes. Actually, this method is the advanced form of the existing temporal-difference based approach named Temporal-Difference based Sequence Anomaly Detection (or TD_SAD). Due to this fact, our approach is called TD_SAD2. It is shown that the proposed approach can achieve at least comparable accuracy for intrusion detection by benchmarking with existing leading approaches.
Název v anglickém jazyce
Advanced Temporal-Difference Learning for Intrusion Detection
Popis výsledku anglicky
Nowadays intrusion detection for cyber security is the dynamically researched area. The main purpose of the intrusion detection is to distinguish normal usage of analyzed system from different forms of misuses and abnormal behaviors. The big amount of intrusion detection approaches such as soft computing and machine learning algorithms was made. In spite of visible progress, there are still many opportunities to improve state-of-the-art techniques. This paper presents the new intrusion detection technique that is based on temporal-difference learning for Markov decision processes. Actually, this method is the advanced form of the existing temporal-difference based approach named Temporal-Difference based Sequence Anomaly Detection (or TD_SAD). Due to this fact, our approach is called TD_SAD2. It is shown that the proposed approach can achieve at least comparable accuracy for intrusion detection by benchmarking with existing leading approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFAC Proceedings Volumes (IFAC-PapersOnline). Volume 48
ISBN
—
ISSN
1474-6670
e-ISSN
—
Počet stran výsledku
5
Strana od-do
43-48
Název nakladatele
IFAC
Místo vydání
London
Místo konání akce
Krakov
Datum konání akce
13. 5. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—