GRU-based deep learning approach for network intrusion alert prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F21%3A10133392" target="_blank" >RIV/63839172:_____/21:10133392 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0167739X21003861" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0167739X21003861</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.future.2021.09.040" target="_blank" >10.1016/j.future.2021.09.040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GRU-based deep learning approach for network intrusion alert prediction
Popis výsledku v původním jazyce
The exponential growth in the number of cyber attacks in the recent past has necessitated active research on network intrusion detection, prediction and mitigation systems. While there are numerous solutions available for intrusion detection, the prediction of future network intrusions still remains an open research problem. Existing approaches employ statistical and/or shallow machine learning methods for the task, and therefore suffer from the need for feature selection and engineering. This paper presents a deep learning based approach for prediction of network intrusion alerts. A Gated Recurrent Unit (GRU) based deep learning model is proposed which is shown to be capable of learning dependencies in security alert sequences, and to output likely future alerts given a past history of alerts from an attacking source. The performance of the model is evaluated on intrusion alert sequences obtained from the Warden alert sharing platform.
Název v anglickém jazyce
GRU-based deep learning approach for network intrusion alert prediction
Popis výsledku anglicky
The exponential growth in the number of cyber attacks in the recent past has necessitated active research on network intrusion detection, prediction and mitigation systems. While there are numerous solutions available for intrusion detection, the prediction of future network intrusions still remains an open research problem. Existing approaches employ statistical and/or shallow machine learning methods for the task, and therefore suffer from the need for feature selection and engineering. This paper presents a deep learning based approach for prediction of network intrusion alerts. A Gated Recurrent Unit (GRU) based deep learning model is proposed which is shown to be capable of learning dependencies in security alert sequences, and to output likely future alerts given a past history of alerts from an attacking source. The performance of the model is evaluated on intrusion alert sequences obtained from the Warden alert sharing platform.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Generation Computer Systems
ISSN
0167-739X
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
128
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
235-247
Kód UT WoS článku
000717744500007
EID výsledku v databázi Scopus
2-s2.0-85118341424