Shallow and Deep Learning Approaches for Network Intrusion Alert Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F20%3A10133283" target="_blank" >RIV/63839172:_____/20:10133283 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1877050920310371" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877050920310371</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2020.04.070" target="_blank" >10.1016/j.procs.2020.04.070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shallow and Deep Learning Approaches for Network Intrusion Alert Prediction
Popis výsledku v původním jazyce
The ever-increasing frequency and intensity of intrusion attacks on computer networks worldwide has necessitated intense research efforts towards the design of attack detection and prediction mechanisms. While there are a variety of intrusion detection solutions available, the prediction of network intrusion events is still under active investigation. Over the past, statistical methods have dominated the design of attack prediction methods. However more recently, both shallow and deep learning techniques have shown promise for such data intensive regression tasks. This paper first explores the use of shallow learning techniques for predicting intrusions in computer networks by estimating the probability that a malicious source will repeat an attack in a given future time interval. The approach also highlights the limits to which shallow learning may be applied for such predictive tasks. The work then goes on to show that deep learning approaches are much more suited for network alert prediction tasks. A recurrent neural network based approach is shown to be more suited for alert prediction tasks. Both approaches are evaluated on the same dataset, comprising of millions of alerts taken from the alert sharing system Warden operated by CESNET.
Název v anglickém jazyce
Shallow and Deep Learning Approaches for Network Intrusion Alert Prediction
Popis výsledku anglicky
The ever-increasing frequency and intensity of intrusion attacks on computer networks worldwide has necessitated intense research efforts towards the design of attack detection and prediction mechanisms. While there are a variety of intrusion detection solutions available, the prediction of network intrusion events is still under active investigation. Over the past, statistical methods have dominated the design of attack prediction methods. However more recently, both shallow and deep learning techniques have shown promise for such data intensive regression tasks. This paper first explores the use of shallow learning techniques for predicting intrusions in computer networks by estimating the probability that a malicious source will repeat an attack in a given future time interval. The approach also highlights the limits to which shallow learning may be applied for such predictive tasks. The work then goes on to show that deep learning approaches are much more suited for network alert prediction tasks. A recurrent neural network based approach is shown to be more suited for alert prediction tasks. Both approaches are evaluated on the same dataset, comprising of millions of alerts taken from the alert sharing system Warden operated by CESNET.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procedia Computer Science
ISSN
1877-0509
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
4. 6. 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
644-653
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85086634612