Deep Learning-Based Intrusion Detection Systems: A Systematic Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F21%3A%230000785" target="_blank" >RIV/04274644:_____/21:#0000785 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9483916" target="_blank" >https://ieeexplore.ieee.org/document/9483916</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3097247" target="_blank" >10.1109/ACCESS.2021.3097247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning-Based Intrusion Detection Systems: A Systematic Review
Popis výsledku v původním jazyce
Nowadays, the ever-increasing complication and severity of security attacks on computer networks have inspired security researchers to incorporate different machine learning methods to protect the organizations’ data and reputation. Deep learning is one of the exciting techniques which recently are vastly employed by the IDS or intrusion detection systems to increase their performance in securing the computer networks and hosts. This survey article focuses on the deep learning-based intrusion detection schemes and puts forward an in-depth survey and classification of these schemes. It first presents the primary background concepts about IDS architecture and various deep learning techniques. It then classifies these schemes according to the type of deep learning methods utilized in each of them. It describes how deep learning networks are utilized in the intrusion detection process to recognize intrusions accurately. Finally, a complete analysis of the investigated IDS frameworks is provided, and concluding remarks and future directions are highlighted.
Název v anglickém jazyce
Deep Learning-Based Intrusion Detection Systems: A Systematic Review
Popis výsledku anglicky
Nowadays, the ever-increasing complication and severity of security attacks on computer networks have inspired security researchers to incorporate different machine learning methods to protect the organizations’ data and reputation. Deep learning is one of the exciting techniques which recently are vastly employed by the IDS or intrusion detection systems to increase their performance in securing the computer networks and hosts. This survey article focuses on the deep learning-based intrusion detection schemes and puts forward an in-depth survey and classification of these schemes. It first presents the primary background concepts about IDS architecture and various deep learning techniques. It then classifies these schemes according to the type of deep learning methods utilized in each of them. It describes how deep learning networks are utilized in the intrusion detection process to recognize intrusions accurately. Finally, a complete analysis of the investigated IDS frameworks is provided, and concluding remarks and future directions are highlighted.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
101574-101599
Kód UT WoS článku
000679942900001
EID výsledku v databázi Scopus
2-s2.0-85110876289