A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092830" target="_blank" >RIV/61989100:27240/14:86092830 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.asoc.2014.09.031" target="_blank" >http://dx.doi.org/10.1016/j.asoc.2014.09.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2014.09.031" target="_blank" >10.1016/j.asoc.2014.09.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP
Popis výsledku v původním jazyce
Swarm-inspired optimization has become very popular in recent years. Particle swarm optimization (PSO) and Ant colony optimization (ACO) algorithms have attracted the interest of researchers due to their simplicity, effectiveness and efficiency in solving complex optimization problems. Both ACO and PSO were successfully applied for solving the traveling salesman problem (TSP). Performance of the conventional PSO algorithm for small problems with moderate dimensions and search space is very satisfactory.As the search, space gets more complex, conventional approaches tend to offer poor solutions. This paper presents a novel approach by introducing a PSO, which is modified by the ACO algorithm to improve the performance. The new hybrid method (PSO-ACO) is validated using the TSP benchmarks and the empirical results considering the completion time and the best length, illustrate that the proposed method is efficient. (C) 2014 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP
Popis výsledku anglicky
Swarm-inspired optimization has become very popular in recent years. Particle swarm optimization (PSO) and Ant colony optimization (ACO) algorithms have attracted the interest of researchers due to their simplicity, effectiveness and efficiency in solving complex optimization problems. Both ACO and PSO were successfully applied for solving the traveling salesman problem (TSP). Performance of the conventional PSO algorithm for small problems with moderate dimensions and search space is very satisfactory.As the search, space gets more complex, conventional approaches tend to offer poor solutions. This paper presents a novel approach by introducing a PSO, which is modified by the ACO algorithm to improve the performance. The new hybrid method (PSO-ACO) is validated using the TSP benchmarks and the empirical results considering the completion time and the best length, illustrate that the proposed method is efficient. (C) 2014 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
234-241
Kód UT WoS článku
000344460600019
EID výsledku v databázi Scopus
—