Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093027" target="_blank" >RIV/61989100:27240/14:86093027 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/CEC.2014.6900473" target="_blank" >http://dx.doi.org/10.1109/CEC.2014.6900473</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2014.6900473" target="_blank" >10.1109/CEC.2014.6900473</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

  • Popis výsledku v původním jazyce

    Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies - techniques that leverage problem domain knowledge - and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context. 2014 IEEE.

  • Název v anglickém jazyce

    Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

  • Popis výsledku anglicky

    Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies - techniques that leverage problem domain knowledge - and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context. 2014 IEEE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014

  • ISBN

    978-1-4799-1488-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    387-396

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    New York

  • Místo konání akce

    Beijing

  • Datum konání akce

    6. 7. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000356684600056