Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093027" target="_blank" >RIV/61989100:27240/14:86093027 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CEC.2014.6900473" target="_blank" >http://dx.doi.org/10.1109/CEC.2014.6900473</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2014.6900473" target="_blank" >10.1109/CEC.2014.6900473</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines
Popis výsledku v původním jazyce
Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies - techniques that leverage problem domain knowledge - and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context. 2014 IEEE.
Název v anglickém jazyce
Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines
Popis výsledku anglicky
Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies - techniques that leverage problem domain knowledge - and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context. 2014 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014
ISBN
978-1-4799-1488-3
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
387-396
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Beijing
Datum konání akce
6. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000356684600056