Rough local transfer function for cardiac disorders detection using heart sounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86096491" target="_blank" >RIV/61989100:27240/14:86096491 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/jigpal/jzv009" target="_blank" >http://dx.doi.org/10.1093/jigpal/jzv009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzv009" target="_blank" >10.1093/jigpal/jzv009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rough local transfer function for cardiac disorders detection using heart sounds
Popis výsledku v původním jazyce
The heart is truly successor to the brain in being the most significant vital organ in the human body. The heart, being a magnificent pump, has its performance orchestrated via a group of valves and highly sophisticated neural control. While the kineticsof the heart are accompanied by sound production, sound waves produced by the heart are reliable diagnostic tools to check heart activity. Chronologically, several data sets have been put forward to observe heart performance and lead to medical intervention whenever necessary. The heart sounds data set utilized in this article provides researchers with an abundance of sound signals classified using different classification algorithms; neural network, rotation forest and random forest are a few that canbe mentioned. This article proposes an approach based on rough sets and a local transfer function classifier for heart valve disease detection. In order to achieve this objective, and to increase the efficiency of the predication model,
Název v anglickém jazyce
Rough local transfer function for cardiac disorders detection using heart sounds
Popis výsledku anglicky
The heart is truly successor to the brain in being the most significant vital organ in the human body. The heart, being a magnificent pump, has its performance orchestrated via a group of valves and highly sophisticated neural control. While the kineticsof the heart are accompanied by sound production, sound waves produced by the heart are reliable diagnostic tools to check heart activity. Chronologically, several data sets have been put forward to observe heart performance and lead to medical intervention whenever necessary. The heart sounds data set utilized in this article provides researchers with an abundance of sound signals classified using different classification algorithms; neural network, rotation forest and random forest are a few that canbe mentioned. This article proposes an approach based on rough sets and a local transfer function classifier for heart valve disease detection. In order to achieve this objective, and to increase the efficiency of the predication model,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logic journal of IGPL
ISSN
1367-0751
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
506-520
Kód UT WoS článku
000357880600014
EID výsledku v databázi Scopus
2-s2.0-84936941835