Local representativeness in vector data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86099406" target="_blank" >RIV/61989100:27240/14:86099406 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/6974025/?arnumber=6974025" target="_blank" >http://ieeexplore.ieee.org/document/6974025/?arnumber=6974025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2014.6974025" target="_blank" >10.1109/SMC.2014.6974025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local representativeness in vector data
Popis výsledku v původním jazyce
The amount of large-scale real data around us is increasing in size very quickly, as is the necessity to reduce its size by obtaining a representative sample. Such sample allows us to use a great variety of analytical methods, the direct application of which on original data would be unfeasible. Conventional sampling methods provide non-deterministic results trying to preserve selected characteristics of the input dataset. We present a novel, simple, straightforward and deterministic approach with the same goal. It is not sampling in the true sense but a reduction of vector data, which maintains very well internal data structures (clusters and density). The approach is based on analyzing the nearest neighbors. Our suggested x-representativeness then takes into account the local density of the data and nearest neighbors of individual data objects. Following that, we also present experiments with two different datasets. The aim of these experiments is to show that the x-representativeness can be used to deterministically reduce the datasets to differently sized samples of representatives, while maintaining properties of the original datasets. (C) 2014 IEEE.
Název v anglickém jazyce
Local representativeness in vector data
Popis výsledku anglicky
The amount of large-scale real data around us is increasing in size very quickly, as is the necessity to reduce its size by obtaining a representative sample. Such sample allows us to use a great variety of analytical methods, the direct application of which on original data would be unfeasible. Conventional sampling methods provide non-deterministic results trying to preserve selected characteristics of the input dataset. We present a novel, simple, straightforward and deterministic approach with the same goal. It is not sampling in the true sense but a reduction of vector data, which maintains very well internal data structures (clusters and density). The approach is based on analyzing the nearest neighbors. Our suggested x-representativeness then takes into account the local density of the data and nearest neighbors of individual data objects. Following that, we also present experiments with two different datasets. The aim of these experiments is to show that the x-representativeness can be used to deterministically reduce the datasets to differently sized samples of representatives, while maintaining properties of the original datasets. (C) 2014 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics 2014
ISBN
978-1-4799-3840-7
ISSN
1062-922X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
894-899
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
San Diego
Datum konání akce
5. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000370963701002