Representativeness in unweighted networks based on local dependency
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86096684" target="_blank" >RIV/61989100:27240/14:86096684 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86096684
Výsledek na webu
<a href="http://dx.doi.org/10.1109/INCoS.2014.68" target="_blank" >http://dx.doi.org/10.1109/INCoS.2014.68</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/INCoS.2014.68" target="_blank" >10.1109/INCoS.2014.68</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representativeness in unweighted networks based on local dependency
Popis výsledku v původním jazyce
Structures of real-world networks show varying degrees of importance of the nodes in their surroundings. The topic of evaluating the importance of the nodes offers many different approaches. We present simple and straightforward approach for the evaluation of the nodes in undirected unweighted networks. The approach is based on x-representativeness measure which is originally intended for weighted networks. The x-representativeness takes into account the degree of the node and its nearest neighbors. Experiments with different real-world unweighted networks are presented. To apply the presented method it is necessary to transform undirected unweighted network into weighted network. Weights in our experiments are measured by dependency between adjacent nodes. The aim of these experiments is to show that the x-representativeness can be used to deterministically reduce the unweighted network to differently sized samples of representatives, while maintaining topological properties of the or
Název v anglickém jazyce
Representativeness in unweighted networks based on local dependency
Popis výsledku anglicky
Structures of real-world networks show varying degrees of importance of the nodes in their surroundings. The topic of evaluating the importance of the nodes offers many different approaches. We present simple and straightforward approach for the evaluation of the nodes in undirected unweighted networks. The approach is based on x-representativeness measure which is originally intended for weighted networks. The x-representativeness takes into account the degree of the node and its nearest neighbors. Experiments with different real-world unweighted networks are presented. To apply the presented method it is necessary to transform undirected unweighted network into weighted network. Weights in our experiments are measured by dependency between adjacent nodes. The aim of these experiments is to show that the x-representativeness can be used to deterministically reduce the unweighted network to differently sized samples of representatives, while maintaining topological properties of the or
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2014 International Conference on Intelligent Networking and Collaborative Systems, IEEE INCoS 2014
ISBN
978-1-4799-6386-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
509-514
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Salerno
Datum konání akce
10. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—