Local Dependency in Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096673" target="_blank" >RIV/61989100:27240/15:86096673 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86096673
Výsledek na webu
<a href="http://dx.doi.org/10.1515/amcs-2015-0022" target="_blank" >http://dx.doi.org/10.1515/amcs-2015-0022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/amcs-2015-0022" target="_blank" >10.1515/amcs-2015-0022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Dependency in Networks
Popis výsledku v původním jazyce
Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis focuses on the relations among the nodes exploring the properties of each network. We introduce a method for measuring the strength ofthe relationship between two nodes of a network and for their ranking. This method is applicable to all kinds of networks, including directed and weighted networks. The approach extracts dependency relations among the network's nodes from the structurein local surroundings of individual nodes. For the tasks we deal with in this article, the key technical parameter is locality. Since only the surroundings of the examined nodes are used in computations, there is no need to analyze the entire network. This allows the application of our approach in the area of large-scale networks. We present several experiments using small networks as well as large-scale artificial and real world networks. The results of the experiments show high effecti
Název v anglickém jazyce
Local Dependency in Networks
Popis výsledku anglicky
Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis focuses on the relations among the nodes exploring the properties of each network. We introduce a method for measuring the strength ofthe relationship between two nodes of a network and for their ranking. This method is applicable to all kinds of networks, including directed and weighted networks. The approach extracts dependency relations among the network's nodes from the structurein local surroundings of individual nodes. For the tasks we deal with in this article, the key technical parameter is locality. Since only the surroundings of the examined nodes are used in computations, there is no need to analyze the entire network. This allows the application of our approach in the area of large-scale networks. We present several experiments using small networks as well as large-scale artificial and real world networks. The results of the experiments show high effecti
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Mathematics and Computer Science
ISSN
1641-876X
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
13
Strana od-do
281-293
Kód UT WoS článku
000358017900008
EID výsledku v databázi Scopus
2-s2.0-84934268517