Wind Speed Forecast Correction Models using Polynomial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095960" target="_blank" >RIV/61989100:27240/15:86095960 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0960148115003341" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0960148115003341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.renene.2015.04.054" target="_blank" >10.1016/j.renene.2015.04.054</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wind Speed Forecast Correction Models using Polynomial Neural Networks
Popis výsledku v původním jazyce
Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types inthe majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve genera
Název v anglickém jazyce
Wind Speed Forecast Correction Models using Polynomial Neural Networks
Popis výsledku anglicky
Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types inthe majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve genera
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Renewable Energy
ISSN
0960-1481
e-ISSN
—
Svazek periodika
83
Číslo periodika v rámci svazku
—
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
998-1006
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—