Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F18%3A10237630" target="_blank" >RIV/61989100:27730/18:10237630 - isvavai.cz</a>
Výsledek na webu
<a href="https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3247" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3247</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations
Popis výsledku v původním jazyce
Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric processes in light of global meteorological observations. Meso-scale forecast systems need to define the initial and lateral boundary conditions, which may be carried out with robust global numerical models. Their overall solutions are able to describe the dynamic weather system on the earth scale using a large number of complete globe 3D matrix variables in several atmospheric layers. Post-processing methods using local measurements were developed in order to clarify surface weather details and adapt numerical weather prediction model outputs for local conditions. Differential polynomial network is a new type of neural network that can model local weather using spatial data observations to process forecasts of the input variables and revise the target 24-hour prognosis. It defines and solves general partial differential equations, being able to describe unknown dynamic systems. The proposed forecast correction method uses differential network to estimate the optimal numbers of training days and form derivative prediction models. It can improve final numerical forecasts, processed with additional data analysis and statistical techniques, in the majority of cases. The presented 2-stage procedure is analogous to the perfect-prog method using real observations to derive a model, which is applied to the forecasts of the predictors to calculate output predictions.
Název v anglickém jazyce
Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations
Popis výsledku anglicky
Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric processes in light of global meteorological observations. Meso-scale forecast systems need to define the initial and lateral boundary conditions, which may be carried out with robust global numerical models. Their overall solutions are able to describe the dynamic weather system on the earth scale using a large number of complete globe 3D matrix variables in several atmospheric layers. Post-processing methods using local measurements were developed in order to clarify surface weather details and adapt numerical weather prediction model outputs for local conditions. Differential polynomial network is a new type of neural network that can model local weather using spatial data observations to process forecasts of the input variables and revise the target 24-hour prognosis. It defines and solves general partial differential equations, being able to describe unknown dynamic systems. The proposed forecast correction method uses differential network to estimate the optimal numbers of training days and form derivative prediction models. It can improve final numerical forecasts, processed with additional data analysis and statistical techniques, in the majority of cases. The presented 2-stage procedure is analogous to the perfect-prog method using real observations to derive a model, which is applied to the forecasts of the predictors to calculate output predictions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quarterly Journal of the Royal Meteorological Society
ISSN
1477-870X
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
712
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
780-791
Kód UT WoS článku
000443007800012
EID výsledku v databázi Scopus
—