Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F18%3A10237630" target="_blank" >RIV/61989100:27730/18:10237630 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3247" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3247</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations

  • Popis výsledku v původním jazyce

    Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric processes in light of global meteorological observations. Meso-scale forecast systems need to define the initial and lateral boundary conditions, which may be carried out with robust global numerical models. Their overall solutions are able to describe the dynamic weather system on the earth scale using a large number of complete globe 3D matrix variables in several atmospheric layers. Post-processing methods using local measurements were developed in order to clarify surface weather details and adapt numerical weather prediction model outputs for local conditions. Differential polynomial network is a new type of neural network that can model local weather using spatial data observations to process forecasts of the input variables and revise the target 24-hour prognosis. It defines and solves general partial differential equations, being able to describe unknown dynamic systems. The proposed forecast correction method uses differential network to estimate the optimal numbers of training days and form derivative prediction models. It can improve final numerical forecasts, processed with additional data analysis and statistical techniques, in the majority of cases. The presented 2-stage procedure is analogous to the perfect-prog method using real observations to derive a model, which is applied to the forecasts of the predictors to calculate output predictions.

  • Název v anglickém jazyce

    Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations

  • Popis výsledku anglicky

    Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric processes in light of global meteorological observations. Meso-scale forecast systems need to define the initial and lateral boundary conditions, which may be carried out with robust global numerical models. Their overall solutions are able to describe the dynamic weather system on the earth scale using a large number of complete globe 3D matrix variables in several atmospheric layers. Post-processing methods using local measurements were developed in order to clarify surface weather details and adapt numerical weather prediction model outputs for local conditions. Differential polynomial network is a new type of neural network that can model local weather using spatial data observations to process forecasts of the input variables and revise the target 24-hour prognosis. It defines and solves general partial differential equations, being able to describe unknown dynamic systems. The proposed forecast correction method uses differential network to estimate the optimal numbers of training days and form derivative prediction models. It can improve final numerical forecasts, processed with additional data analysis and statistical techniques, in the majority of cases. The presented 2-stage procedure is analogous to the perfect-prog method using real observations to derive a model, which is applied to the forecasts of the predictors to calculate output predictions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quarterly Journal of the Royal Meteorological Society

  • ISSN

    1477-870X

  • e-ISSN

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    712

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    780-791

  • Kód UT WoS článku

    000443007800012

  • EID výsledku v databázi Scopus