Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical Weather Prediction Revisions using the Locally Trained Differential Polynomial Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86095963" target="_blank" >RIV/61989100:27240/16:86095963 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/16:86095963

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0957417415006247" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0957417415006247</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2015.08.057" target="_blank" >10.1016/j.eswa.2015.08.057</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical Weather Prediction Revisions using the Locally Trained Differential Polynomial Network

  • Popis výsledku v původním jazyce

    Meso-scale forecasts result from global numerical weather prediction models, which are based upon the differential equations for atmospheric dynamics that do not perfectly determine weather conditions near the ground. Statistical corrections can combine complex numerical models, based on the physics of the atmosphere to forecast the large-scale weather patterns, and regression in post-processing to clarify surface weather details according to local observations and climatological conditions. Neural networks trained with local relevant weather observations of fluctuant data relations in current conditions, entered by numerical model outcomes of the same data types, may revise its one target short-term prognosis (e.g. relative humidity or temperature) to stand for these methods. Polynomial neural networks can compose general partial differential equations, which allow model more complicated real system functions from discrete time-series observations than using standard soft-computing methods. This new neural network technique generates convergent series of substitution relative derivative terms, which combination sum can define and solve an unknown general partial differential equation, able to describe dynamic processes of the weather system in a local area, analogous to the differential equation systems of numerical models. The trained network model revises hourly-series of numerical prognosis of one target variable in sequence, applying the general differential equation solution of the correction multi-variable function to corresponding output variables of the 24-hour numerical forecast. The experimental results proved this polynomial network type can successfully revise some numerical weather prognoses after this manner.

  • Název v anglickém jazyce

    Numerical Weather Prediction Revisions using the Locally Trained Differential Polynomial Network

  • Popis výsledku anglicky

    Meso-scale forecasts result from global numerical weather prediction models, which are based upon the differential equations for atmospheric dynamics that do not perfectly determine weather conditions near the ground. Statistical corrections can combine complex numerical models, based on the physics of the atmosphere to forecast the large-scale weather patterns, and regression in post-processing to clarify surface weather details according to local observations and climatological conditions. Neural networks trained with local relevant weather observations of fluctuant data relations in current conditions, entered by numerical model outcomes of the same data types, may revise its one target short-term prognosis (e.g. relative humidity or temperature) to stand for these methods. Polynomial neural networks can compose general partial differential equations, which allow model more complicated real system functions from discrete time-series observations than using standard soft-computing methods. This new neural network technique generates convergent series of substitution relative derivative terms, which combination sum can define and solve an unknown general partial differential equation, able to describe dynamic processes of the weather system in a local area, analogous to the differential equation systems of numerical models. The trained network model revises hourly-series of numerical prognosis of one target variable in sequence, applying the general differential equation solution of the correction multi-variable function to corresponding output variables of the 24-hour numerical forecast. The experimental results proved this polynomial network type can successfully revise some numerical weather prognoses after this manner.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    44

  • Číslo periodika v rámci svazku

    jaro

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    "265-274"

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus