NWP Model Revisions using Polynomial Similarity Solutions of the General Partial Differential Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F17%3A10237633" target="_blank" >RIV/61989100:27730/17:10237633 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-76354-5_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-76354-5_8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NWP Model Revisions using Polynomial Similarity Solutions of the General Partial Differential Equation
Popis výsledku v původním jazyce
Global weather models solve systems of differential equations to forecast large-scale weather patterns, which do not perfectly represent atmospheric processes near the ground. Statistical corrections were developed to adapt numerical weath-er prognoses for specific local conditions. These techniques combine complex long-term forecasts, based on the physics of the atmosphere, with surface obser-vations using regression in post-processing to clarify surface weather details. Differential polynomial neural network is a new neural network type, which gen-erates series of relative derivative terms to substitute for the general linear partial differential equation, being able to describe the local weather dynamics. The gen-eral derivative formula is expanded by means of the network backward structure into a convergent sum combination of selected composite polynomial fraction terms. Their equality derivative changes can model actual relations of local weath-er data, which are too complex to be represented by standard computing tech-niques. The derivative models can process numerical forecasts of the trained data variables to refine the target 24-hour prognosis of relative humidity or tempera-ture and improve the statistical corrections. Overnight weather changes break the similarity of trained and forecast patterns so that the models are improper and fail in actual revisions but these intermittent days only follow a sort of settled longer periods.
Název v anglickém jazyce
NWP Model Revisions using Polynomial Similarity Solutions of the General Partial Differential Equation
Popis výsledku anglicky
Global weather models solve systems of differential equations to forecast large-scale weather patterns, which do not perfectly represent atmospheric processes near the ground. Statistical corrections were developed to adapt numerical weath-er prognoses for specific local conditions. These techniques combine complex long-term forecasts, based on the physics of the atmosphere, with surface obser-vations using regression in post-processing to clarify surface weather details. Differential polynomial neural network is a new neural network type, which gen-erates series of relative derivative terms to substitute for the general linear partial differential equation, being able to describe the local weather dynamics. The gen-eral derivative formula is expanded by means of the network backward structure into a convergent sum combination of selected composite polynomial fraction terms. Their equality derivative changes can model actual relations of local weath-er data, which are too complex to be represented by standard computing tech-niques. The derivative models can process numerical forecasts of the trained data variables to refine the target 24-hour prognosis of relative humidity or tempera-ture and improve the statistical corrections. Overnight weather changes break the similarity of trained and forecast patterns so that the models are improper and fail in actual revisions but these intermittent days only follow a sort of settled longer periods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
8th International Conference on Innovations in Bio-Inspired Computing and Application (IBICA'17) : proceedings : December 11-13, 2017, Marrakech, Morocco
ISBN
978-3-319-76353-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
81-91
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Marrákeš
Datum konání akce
11. 12. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—