Post-processing of numerical forecasts using polynomial networks with the operational calculus PDE substitution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240154" target="_blank" >RIV/61989100:27240/18:10240154 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/18:10240154
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-01818-4_42" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01818-4_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01818-4_42" target="_blank" >10.1007/978-3-030-01818-4_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Post-processing of numerical forecasts using polynomial networks with the operational calculus PDE substitution
Popis výsledku v původním jazyce
Large-scale weather forecast models are based on the numerical integration of systems of differential equation which can describe atmospheric processes in light of physical patterns. Meso-scale weather forecast systems need to define the initial and lateral boundary conditions which can be supplied by global numerical models. Their overall solutions, using a large number of data variables in several atmospheric layers, represent the weather dynamics on the earth scale. Post-processing methods using local measurements were developed in order to adapt numerical weather prediction model outputs for local conditions with surface details. The proposed forecasts correction procedure is based on the 2-stage approach of the Perfect Prog method using data observations to derive a model which is applied to the forecasts of input variables to predict 24-h series of the target output. The post-processing model formation requires an additional initial estimation of the optimal number of training days in consideration of the latest test data. Differential polynomial network is a recent machine learning technique using a polynomial PDE substitution of Operational calculus to form the test and prediction models. It decomposes the general PDE into the 2nd order sub-PDEs in its nodes, being able to describe the local weather dynamics in the surface level. The PDE sum models represent the current local data relations in a sort of settled weather which allow improvements in local forecasts corrected with NWP utilities in the majority of days. (C) Springer Nature Switzerland AG 2019.
Název v anglickém jazyce
Post-processing of numerical forecasts using polynomial networks with the operational calculus PDE substitution
Popis výsledku anglicky
Large-scale weather forecast models are based on the numerical integration of systems of differential equation which can describe atmospheric processes in light of physical patterns. Meso-scale weather forecast systems need to define the initial and lateral boundary conditions which can be supplied by global numerical models. Their overall solutions, using a large number of data variables in several atmospheric layers, represent the weather dynamics on the earth scale. Post-processing methods using local measurements were developed in order to adapt numerical weather prediction model outputs for local conditions with surface details. The proposed forecasts correction procedure is based on the 2-stage approach of the Perfect Prog method using data observations to derive a model which is applied to the forecasts of input variables to predict 24-h series of the target output. The post-processing model formation requires an additional initial estimation of the optimal number of training days in consideration of the latest test data. Differential polynomial network is a recent machine learning technique using a polynomial PDE substitution of Operational calculus to form the test and prediction models. It decomposes the general PDE into the 2nd order sub-PDEs in its nodes, being able to describe the local weather dynamics in the surface level. The PDE sum models represent the current local data relations in a sort of settled weather which allow improvements in local forecasts corrected with NWP utilities in the majority of days. (C) Springer Nature Switzerland AG 2019.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 875
ISBN
978-3-030-01820-7
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
11
Strana od-do
423-433
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Soči
Datum konání akce
17. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—