Post-processing of Wind-speed Forecasts Using the extended Perfect Prog method with Polynomial Neural Networks to elicit PDE models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240159" target="_blank" >RIV/61989100:27240/18:10240159 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/18:10240159
Výsledek na webu
<a href="https://www.springer.com/gp/book/9783030143466" target="_blank" >https://www.springer.com/gp/book/9783030143466</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Post-processing of Wind-speed Forecasts Using the extended Perfect Prog method with Polynomial Neural Networks to elicit PDE models
Popis výsledku v původním jazyce
Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Differential polynomial network is a recent machine learning technique used to develop post-processing models. It decom-poses and substitutes for the general linear Partial Differential Equation being able to describe the local atmospheric dynamics which is too complex to be mod-elled by standard soft-computing. The complete derivative formula is decom-posed, using a multi-layer polynomial network structure, into specific sub-PDE solutions of the unknown node sum functions. The sum PDE models, using a polynomial PDE substitution based on Operational Calculus, represent spatial da-ta relations between the relevant meteorological inputs->output quantities. The proposed forecasts post-processing is based on the 2-stage approach of the Per-fect Prog method used routinely in meteorology. The original procedure is ex-tended with initial estimations of the optimal numbers of training days whose lat-est data observations are used to elicit daily prediction models in the 1st stage. De-termination of the optimal models initialization time allows for improvements in the middle-term numerical forecasts of wind speed in prevailing more or less set-tled weather. In the 2nd stage the correction model is applied to forecasts of the training input variables to calculate 24-hour prediction series of the target wind speed at the corresponding time.
Název v anglickém jazyce
Post-processing of Wind-speed Forecasts Using the extended Perfect Prog method with Polynomial Neural Networks to elicit PDE models
Popis výsledku anglicky
Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Differential polynomial network is a recent machine learning technique used to develop post-processing models. It decom-poses and substitutes for the general linear Partial Differential Equation being able to describe the local atmospheric dynamics which is too complex to be mod-elled by standard soft-computing. The complete derivative formula is decom-posed, using a multi-layer polynomial network structure, into specific sub-PDE solutions of the unknown node sum functions. The sum PDE models, using a polynomial PDE substitution based on Operational Calculus, represent spatial da-ta relations between the relevant meteorological inputs->output quantities. The proposed forecasts post-processing is based on the 2-stage approach of the Per-fect Prog method used routinely in meteorology. The original procedure is ex-tended with initial estimations of the optimal numbers of training days whose lat-est data observations are used to elicit daily prediction models in the 1st stage. De-termination of the optimal models initialization time allows for improvements in the middle-term numerical forecasts of wind speed in prevailing more or less set-tled weather. In the 2nd stage the correction model is applied to forecasts of the training input variables to calculate 24-hour prediction series of the target wind speed at the corresponding time.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Intelligent Systems and Computing. Volume 923
ISSN
2194-5357
e-ISSN
—
Svazek periodika
923
Číslo periodika v rámci svazku
únor-březen, 2019
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—