Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-site post-processing of numerical forecasts using a polynomial network substitution for the general differential equation based on operational calculus

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F18%3A10240151" target="_blank" >RIV/61989100:27730/18:10240151 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.asoc.2018.08.040" target="_blank" >https://doi.org/10.1016/j.asoc.2018.08.040</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-site post-processing of numerical forecasts using a polynomial network substitution for the general differential equation based on operational calculus

  • Popis výsledku v původním jazyce

    Precise daily forecasts of local wind speed are necessary for planning of the changeable wind power production. Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Based on a 2-stage approach of the Perfect Prog method, used routinely in meteorology, the article proposes an enhanced forecast correction procedure with initial estimations of the optimal numbers of training days whose latest data observations are used to elicit daily prediction models. Determination of this main training parameter allows for improvements in the middle-term numerical forecasts of wind speed in the majority of prediction days. Subsequently in the 2nd stage the correction model post-processes numerical forecasts of the training input variables to calculate 24-hour prediction series of the target wind speed at the corresponding time. Differential polynomial network is used to develop the test and post-processing models, which represent the current spatial data relations between the relevant meteorological inputs-&gt;output quantities. This innovative machine learning method defines and substitutes for the general linear partial differential equation being able to describe the local atmospheric dynamics which is too complex and uncertain to be represented by standard soft-computing techniques. The complete derivative formula is decomposed into specific sub-solutions of node unknown sum functions in the multi-layer polynomial network structure using Operational Calculus to model the searched separable output function.

  • Název v anglickém jazyce

    Multi-site post-processing of numerical forecasts using a polynomial network substitution for the general differential equation based on operational calculus

  • Popis výsledku anglicky

    Precise daily forecasts of local wind speed are necessary for planning of the changeable wind power production. Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Based on a 2-stage approach of the Perfect Prog method, used routinely in meteorology, the article proposes an enhanced forecast correction procedure with initial estimations of the optimal numbers of training days whose latest data observations are used to elicit daily prediction models. Determination of this main training parameter allows for improvements in the middle-term numerical forecasts of wind speed in the majority of prediction days. Subsequently in the 2nd stage the correction model post-processes numerical forecasts of the training input variables to calculate 24-hour prediction series of the target wind speed at the corresponding time. Differential polynomial network is used to develop the test and post-processing models, which represent the current spatial data relations between the relevant meteorological inputs-&gt;output quantities. This innovative machine learning method defines and substitutes for the general linear partial differential equation being able to describe the local atmospheric dynamics which is too complex and uncertain to be represented by standard soft-computing techniques. The complete derivative formula is decomposed into specific sub-solutions of node unknown sum functions in the multi-layer polynomial network structure using Operational Calculus to model the searched separable output function.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    73

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    192-202

  • Kód UT WoS článku

    000450124900014

  • EID výsledku v databázi Scopus