Recognition of Face Images with Noise Based on Tucker Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096032" target="_blank" >RIV/61989100:27240/15:86096032 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7379595" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7379595</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2015.463" target="_blank" >10.1109/SMC.2015.463</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of Face Images with Noise Based on Tucker Decomposition
Popis výsledku v původním jazyce
The main goal of this paper is to detect faces from noisy images using three different classification methods and compare the results obtained from the classification methods. The faces are described by a set of images. Many other unsupervised statistical algorithms such as Principal Component Analysis (PCA) or Singular Value Decomposition (SVD) use only one image per person to extract features from the face. These approaches can lose important information, for example a relationship between images of the same person taken under different conditions. It shows that data structure like tensor and it decomposition increase the quality of recognition in this task because it better captures important features of one face taken from several images. The accuracy of the tensor approach is compared with other well-known techniques such as Support Vector Machine (SVM) and Neural Network (NN).
Název v anglickém jazyce
Recognition of Face Images with Noise Based on Tucker Decomposition
Popis výsledku anglicky
The main goal of this paper is to detect faces from noisy images using three different classification methods and compare the results obtained from the classification methods. The faces are described by a set of images. Many other unsupervised statistical algorithms such as Principal Component Analysis (PCA) or Singular Value Decomposition (SVD) use only one image per person to extract features from the face. These approaches can lose important information, for example a relationship between images of the same person taken under different conditions. It shows that data structure like tensor and it decomposition increase the quality of recognition in this task because it better captures important features of one face taken from several images. The accuracy of the tensor approach is compared with other well-known techniques such as Support Vector Machine (SVM) and Neural Network (NN).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2015 IEEE International Conference On Systems, Man And Cybernetics (Smc 2015) : Big Data Analytics For Human-Centric Systems
ISBN
978-1-4799-8696-5
ISSN
1062-922X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2649-2653
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Hong Kong
Datum konání akce
9. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000368940202129