Spam detection based on nearest community classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096394" target="_blank" >RIV/61989100:27240/15:86096394 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86096394
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7312096&newsearch=true&queryText=Spam%20detection%20based%20on%20nearest%20community%20classifier" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7312096&newsearch=true&queryText=Spam%20detection%20based%20on%20nearest%20community%20classifier</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/INCoS.2015.75" target="_blank" >10.1109/INCoS.2015.75</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spam detection based on nearest community classifier
Popis výsledku v původním jazyce
Undesirable emails (spam) are increasingly becoming a big problem nowadays, not only for users, but also for Internet service providers. Therefore, the design of new algorithms detecting the spam is currently one of the research hot-topics. We define tworequirements and use them simultaneously. The first requirement is a low rate of falsely detected emails which has an impact on the algorithm performance. The second requirement is a fast detection of spams. It minimizes the delay in receiving emails. In this paper, we focus our effort on the first requirement. To solve this problem we applied network community analysis. The approach is to find communities-groups of same emails. In this paper, we present a new nearest community classifier and apply itin the field of spam detection. The obtained results are very close to Bayesian Spam Filter. We achieved 93.78% accuracy. The algorithm can detect 80.72% of spam emails and 98.01% non-spam emails.
Název v anglickém jazyce
Spam detection based on nearest community classifier
Popis výsledku anglicky
Undesirable emails (spam) are increasingly becoming a big problem nowadays, not only for users, but also for Internet service providers. Therefore, the design of new algorithms detecting the spam is currently one of the research hot-topics. We define tworequirements and use them simultaneously. The first requirement is a low rate of falsely detected emails which has an impact on the algorithm performance. The second requirement is a fast detection of spams. It minimizes the delay in receiving emails. In this paper, we focus our effort on the first requirement. To solve this problem we applied network community analysis. The approach is to find communities-groups of same emails. In this paper, we present a new nearest community classifier and apply itin the field of spam detection. The obtained results are very close to Bayesian Spam Filter. We achieved 93.78% accuracy. The algorithm can detect 80.72% of spam emails and 98.01% non-spam emails.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Networking and Collaborative Systems INCoS-2015 : 7th International Conference : proceedings : September 2-4, 2015, Taipei, Tchaj-wan
ISBN
978-1-4673-7694-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
354-359
Název nakladatele
IEEE
Místo vydání
Vienna
Místo konání akce
Taipei
Datum konání akce
2. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—