A combined negative selection algorithm-particle swarm optimization for an email spam detection system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86092867" target="_blank" >RIV/61989100:27240/15:86092867 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18450/15:50003035
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0952197614002656" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0952197614002656</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2014.11.001" target="_blank" >10.1016/j.engappai.2014.11.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A combined negative selection algorithm-particle swarm optimization for an email spam detection system
Popis výsledku v původním jazyce
Email is a convenient means of communication throughout the entire world today. The increased popularity of email spam in both text and images requires a real-time protection mechanism for the media flow. The previous approach has been limited by the adaptive nature of unsolicited email spam. This research introduces an email detection system that is designed based on an improvement in the negative selection algorithm. Furthermore, particle swarm optimization (PSO) was implemented to improve the randomdetector generation in the negative selection algorithm (NSA). The algorithm generates detectors in the random detector generation phase of the negative selection algorithm. The combined NSA-PSO uses a local outlier factor (LOF) as the fitness function for the detector generation. The detector generation process is terminated when the expected spam coverage is reached. A distance measure and a threshold value are employed to enhance the distinctiveness between the non-spam and spam detec
Název v anglickém jazyce
A combined negative selection algorithm-particle swarm optimization for an email spam detection system
Popis výsledku anglicky
Email is a convenient means of communication throughout the entire world today. The increased popularity of email spam in both text and images requires a real-time protection mechanism for the media flow. The previous approach has been limited by the adaptive nature of unsolicited email spam. This research introduces an email detection system that is designed based on an improvement in the negative selection algorithm. Furthermore, particle swarm optimization (PSO) was implemented to improve the randomdetector generation in the negative selection algorithm (NSA). The algorithm generates detectors in the random detector generation phase of the negative selection algorithm. The combined NSA-PSO uses a local outlier factor (LOF) as the fitness function for the detector generation. The detector generation process is terminated when the expected spam coverage is reached. A distance measure and a threshold value are employed to enhance the distinctiveness between the non-spam and spam detec
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN
0952-1976
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
March 2015
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
33-44
Kód UT WoS článku
000349878400004
EID výsledku v databázi Scopus
2-s2.0-84921734655