Fuzzy granular classifier approach for spam detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005536" target="_blank" >RIV/62690094:18450/17:50005536 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/JIFS-169133" target="_blank" >http://dx.doi.org/10.3233/JIFS-169133</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/JIFS-169133" target="_blank" >10.3233/JIFS-169133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy granular classifier approach for spam detection
Popis výsledku v původním jazyce
Spam email problem is a major shortcoming of email technology for computer security. In this research, a granular classifier model is proposed to discover hyper-boxes in the geometry of information granules for spam detection in three steps. In the first step, the k-means clustering algorithm is applied to find the seed_points to build the granular structure of the spam and non-spam patterns. Moreover, the key part of the spam and non-spam classifiers’ structure is captured by applying the interval analysis through the high homogeneity of the patterns. In the second step, PSO algorithm is hybridized with the k-means to optimize the formalized information granules’ performance. The size of the hyperboxes is expanded away from the center of the granules by PSO. There are some patterns that do not placed in any of the created clusters and known as noise points. In the third step, the membership function in fuzzy sets is applied to solve the noise points’ problem by allocating the noise points through the membership grades. The proposed model is evaluated based on the accuracy, misclassification and coverage criteria. Experimental results reveal that the performance of our proposed model is increased through applying Particle Swarm Optimization and fuzzy set.
Název v anglickém jazyce
Fuzzy granular classifier approach for spam detection
Popis výsledku anglicky
Spam email problem is a major shortcoming of email technology for computer security. In this research, a granular classifier model is proposed to discover hyper-boxes in the geometry of information granules for spam detection in three steps. In the first step, the k-means clustering algorithm is applied to find the seed_points to build the granular structure of the spam and non-spam patterns. Moreover, the key part of the spam and non-spam classifiers’ structure is captured by applying the interval analysis through the high homogeneity of the patterns. In the second step, PSO algorithm is hybridized with the k-means to optimize the formalized information granules’ performance. The size of the hyperboxes is expanded away from the center of the granules by PSO. There are some patterns that do not placed in any of the created clusters and known as noise points. In the third step, the membership function in fuzzy sets is applied to solve the noise points’ problem by allocating the noise points through the membership grades. The proposed model is evaluated based on the accuracy, misclassification and coverage criteria. Experimental results reveal that the performance of our proposed model is increased through applying Particle Swarm Optimization and fuzzy set.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of intelligent and fuzzy systems
ISSN
1064-1246
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1355-1363
Kód UT WoS článku
000395520700019
EID výsledku v databázi Scopus
—