Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy granular classifier approach for spam detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005536" target="_blank" >RIV/62690094:18450/17:50005536 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3233/JIFS-169133" target="_blank" >http://dx.doi.org/10.3233/JIFS-169133</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/JIFS-169133" target="_blank" >10.3233/JIFS-169133</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy granular classifier approach for spam detection

  • Popis výsledku v původním jazyce

    Spam email problem is a major shortcoming of email technology for computer security. In this research, a granular classifier model is proposed to discover hyper-boxes in the geometry of information granules for spam detection in three steps. In the first step, the k-means clustering algorithm is applied to find the seed_points to build the granular structure of the spam and non-spam patterns. Moreover, the key part of the spam and non-spam classifiers’ structure is captured by applying the interval analysis through the high homogeneity of the patterns. In the second step, PSO algorithm is hybridized with the k-means to optimize the formalized information granules’ performance. The size of the hyperboxes is expanded away from the center of the granules by PSO. There are some patterns that do not placed in any of the created clusters and known as noise points. In the third step, the membership function in fuzzy sets is applied to solve the noise points’ problem by allocating the noise points through the membership grades. The proposed model is evaluated based on the accuracy, misclassification and coverage criteria. Experimental results reveal that the performance of our proposed model is increased through applying Particle Swarm Optimization and fuzzy set.

  • Název v anglickém jazyce

    Fuzzy granular classifier approach for spam detection

  • Popis výsledku anglicky

    Spam email problem is a major shortcoming of email technology for computer security. In this research, a granular classifier model is proposed to discover hyper-boxes in the geometry of information granules for spam detection in three steps. In the first step, the k-means clustering algorithm is applied to find the seed_points to build the granular structure of the spam and non-spam patterns. Moreover, the key part of the spam and non-spam classifiers’ structure is captured by applying the interval analysis through the high homogeneity of the patterns. In the second step, PSO algorithm is hybridized with the k-means to optimize the formalized information granules’ performance. The size of the hyperboxes is expanded away from the center of the granules by PSO. There are some patterns that do not placed in any of the created clusters and known as noise points. In the third step, the membership function in fuzzy sets is applied to solve the noise points’ problem by allocating the noise points through the membership grades. The proposed model is evaluated based on the accuracy, misclassification and coverage criteria. Experimental results reveal that the performance of our proposed model is increased through applying Particle Swarm Optimization and fuzzy set.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of intelligent and fuzzy systems

  • ISSN

    1064-1246

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    1355-1363

  • Kód UT WoS článku

    000395520700019

  • EID výsledku v databázi Scopus