Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096564" target="_blank" >RIV/61989100:27240/15:86096564 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7319334" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7319334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EMBC.2015.7319334" target="_blank" >10.1109/EMBC.2015.7319334</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm
Popis výsledku v původním jazyce
The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. Forthe former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%. (C) 2
Název v anglickém jazyce
Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm
Popis výsledku anglicky
The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. Forthe former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%. (C) 2
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Volume 2015-November
ISBN
978-1-4244-9271-8
ISSN
1557-170X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
4254-4257
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Miláno
Datum konání akce
25. 8. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—