LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018255" target="_blank" >RIV/62690094:18450/21:50018255 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9502134" target="_blank" >https://ieeexplore.ieee.org/document/9502134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMI.2021.3101453" target="_blank" >10.1109/TMI.2021.3101453</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms
Popis výsledku v původním jazyce
This paper proposes a novel local feature descriptor coined as a local instant-and-center-symmetric neighbor-based pattern of the extrema-images (LINPE) to detect breast abnormalities in thermal breast images. It is a hybrid descriptor that combines two different feature descriptors: one is the inverse-probability difference extrema (IpDE), and another is the local instant and center-symmetric neighbor-based pattern (LICsNP). IpDE is developed to compute the intensity-inhomogeneity-invariant feature-based image of the breast thermogram. Besides, the LICsNP is intended to capture the local microstructure pattern information in the IpDE image. A new paradigm, named Broad Learning (BL) network, is introduced here as a classifier to differentiate the healthy and sick breast thermograms efficiently. The efficacy of the proposed system is quantitatively validated on the images of DMR-IR and DBT-TU-JU databases. Extensive experimentation on these databases with an average accuracy of 96.90% and 94%, respectively, justifies proposed system’s superiority in the differentiation of healthy and sick breast thermograms over the other related existing state-of-the-art methods. The proposed system also performs consistently in the presence of noise and rotational changes. IEEE
Název v anglickém jazyce
LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms
Popis výsledku anglicky
This paper proposes a novel local feature descriptor coined as a local instant-and-center-symmetric neighbor-based pattern of the extrema-images (LINPE) to detect breast abnormalities in thermal breast images. It is a hybrid descriptor that combines two different feature descriptors: one is the inverse-probability difference extrema (IpDE), and another is the local instant and center-symmetric neighbor-based pattern (LICsNP). IpDE is developed to compute the intensity-inhomogeneity-invariant feature-based image of the breast thermogram. Besides, the LICsNP is intended to capture the local microstructure pattern information in the IpDE image. A new paradigm, named Broad Learning (BL) network, is introduced here as a classifier to differentiate the healthy and sick breast thermograms efficiently. The efficacy of the proposed system is quantitatively validated on the images of DMR-IR and DBT-TU-JU databases. Extensive experimentation on these databases with an average accuracy of 96.90% and 94%, respectively, justifies proposed system’s superiority in the differentiation of healthy and sick breast thermograms over the other related existing state-of-the-art methods. The proposed system also performs consistently in the presence of noise and rotational changes. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Medical Imaging
ISSN
0278-0062
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
3919-3931
Kód UT WoS článku
000724511900057
EID výsledku v databázi Scopus
2-s2.0-85112647570