Big Data Movement: A Challenge in Data Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86097012" target="_blank" >RIV/61989100:27240/15:86097012 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985815:_____/15:00450861 RIV/00216208:11320/15:10282546 RIV/61989100:27740/15:86097012
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-11056-1_2" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-11056-1_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-11056-1_2" target="_blank" >10.1007/978-3-319-11056-1_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Big Data Movement: A Challenge in Data Processing
Popis výsledku v původním jazyce
This chapter discusses modern methods of data processing, namely its paralleliza-tion with attention to the bio-inspired methods. Explanation how selected evolu-tionary algorithms can do synthesis of novel methods are demonstrated on the astrophysical large data sets. Such approach is now characteristic for so called Big Data and Big Analytics. First, we describe some new database architectures sup-porting Big Data storage and processing. We discuss also Big Data problems, i.e. their sources, characteristics, processing, and analyzing. Parallelism in the service of data processing is introduced in detail. We show how new technologies force programmers to consider parallel processing not only in a distributive way (hori-zontal scaling), but also within each server (vertical scaling). The chapter also dis-cusses in large interdisciplinary intersection between astrophysics and computer science, i.e., so called astroinformatics with rich set of data sources and examples. The last part of the chapter is devoted to selected bio-inspired methods and their use on simple model synthesis from astrophysical Big Data collection. Some sug-gestion on how new algorithms can be synthesized by bio-inspired methods are mentioned as well as its possible use Big Data processing. We also give a brief overview on usability areas of the algorithms and end with some general remarks of the limits of computing.
Název v anglickém jazyce
Big Data Movement: A Challenge in Data Processing
Popis výsledku anglicky
This chapter discusses modern methods of data processing, namely its paralleliza-tion with attention to the bio-inspired methods. Explanation how selected evolu-tionary algorithms can do synthesis of novel methods are demonstrated on the astrophysical large data sets. Such approach is now characteristic for so called Big Data and Big Analytics. First, we describe some new database architectures sup-porting Big Data storage and processing. We discuss also Big Data problems, i.e. their sources, characteristics, processing, and analyzing. Parallelism in the service of data processing is introduced in detail. We show how new technologies force programmers to consider parallel processing not only in a distributive way (hori-zontal scaling), but also within each server (vertical scaling). The chapter also dis-cusses in large interdisciplinary intersection between astrophysics and computer science, i.e., so called astroinformatics with rich set of data sources and examples. The last part of the chapter is devoted to selected bio-inspired methods and their use on simple model synthesis from astrophysical Big Data collection. Some sug-gestion on how new algorithms can be synthesized by bio-inspired methods are mentioned as well as its possible use Big Data processing. We also give a brief overview on usability areas of the algorithms and end with some general remarks of the limits of computing.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-08195S" target="_blank" >GA13-08195S: Vysoce škálovatelné paralelní a distribuované metody zpracování vědeckých dat</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Big Data in Complex Systems
ISBN
978-3-319-11055-4
Počet stran výsledku
41
Strana od-do
29-69
Počet stran knihy
500
Název nakladatele
Springer Verlag
Místo vydání
Heidelberg
Kód UT WoS kapitoly
—