Risk assessment for grid computing using meta-learning ensembles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86097026" target="_blank" >RIV/61989100:27240/15:86097026 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-17398-6_23" target="_blank" >http://dx.doi.org/10.1007/978-3-319-17398-6_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-17398-6_23" target="_blank" >10.1007/978-3-319-17398-6_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Risk assessment for grid computing using meta-learning ensembles
Popis výsledku v původním jazyce
Assessing risk associated with computational grid is an essential need for both the resource providers and the users who runs applications in grid environments. In this chapter, we modeled the prediction process of risk assessment (RA) in grid computingutilizing meta-learning approaches in order to improve the performance of the individual predictive models. In this chapter, four algorithms were selected as base classifiers, namely isotonic regression, instance base knowledge (IBK), randomizable filtered classified tree, and extra tree. Two meta-schemes, known as voting and multi schemes, were adopted to perform an ensemble risk prediction model in order to have better performance. The combination of prediction models was compared based on root mean-squared error (RMSE) to find out the best suitable algorithm. The performance of the prediction models is measured using percentage split. Experiments and assessments of these methods are performed using nine datasets for grid computing ri
Název v anglickém jazyce
Risk assessment for grid computing using meta-learning ensembles
Popis výsledku anglicky
Assessing risk associated with computational grid is an essential need for both the resource providers and the users who runs applications in grid environments. In this chapter, we modeled the prediction process of risk assessment (RA) in grid computingutilizing meta-learning approaches in order to improve the performance of the individual predictive models. In this chapter, four algorithms were selected as base classifiers, namely isotonic regression, instance base knowledge (IBK), randomizable filtered classified tree, and extra tree. Two meta-schemes, known as voting and multi schemes, were adopted to perform an ensemble risk prediction model in order to have better performance. The combination of prediction models was compared based on root mean-squared error (RMSE) to find out the best suitable algorithm. The performance of the prediction models is measured using percentage split. Experiments and assessments of these methods are performed using nine datasets for grid computing ri
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 355
ISBN
978-3-319-17397-9
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
10
Strana od-do
251-260
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Melaka
Datum konání akce
8. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—