Fusion of multiple diverse predictors in stock market
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F17%3A10237645" target="_blank" >RIV/61989100:27510/17:10237645 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/profile/Sasan_Barak/publication/309800923_Fusion_of_Multiple_Diverse_Predictors_in_Stock_Market/links/59d71e25a6fdcc52acabc31e/Fusion-of-Multiple-Diverse-Predictors-in-Stock-Market.pdf" target="_blank" >https://www.researchgate.net/profile/Sasan_Barak/publication/309800923_Fusion_of_Multiple_Diverse_Predictors_in_Stock_Market/links/59d71e25a6fdcc52acabc31e/Fusion-of-Multiple-Diverse-Predictors-in-Stock-Market.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2016.11.006" target="_blank" >10.1016/j.inffus.2016.11.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fusion of multiple diverse predictors in stock market
Popis výsledku v původním jazyce
Forecasting stock returns and their risk represents one of the most important concerns of market decision makers. Although many studies have examined single classifiers of stock returns and risk methods, fusion methods, which have only recently emerged, require further study in this area. The main aim of this paper is to propose a fusion model based on the use of multiple diverse base classifiers that operate on a common input and a Meta classifier that learns from base classifiers’ outputs to obtain more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes is determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. The results demonstrate that Bagging exhibited superior performance within the fusion scheme and could achieve a maximum of 83.6% accuracy with Decision Tree, LAD Tree and Rep Tree for return prediction and 88.2% accuracy with BF Tree, DTNB and LAD Tree in risk prediction. For feature selection part, a wrapper-GA algorithm is developed and compared with the fusion model. This paper seeks to help researcher select the best individual classifiers and fuse the proper scheme in stock market prediction. To illustrate the approach, we apply it to Tehran Stock Exchange (TSE) data for the period from 2002 to 2012. © 2016 Elsevier B.V.
Název v anglickém jazyce
Fusion of multiple diverse predictors in stock market
Popis výsledku anglicky
Forecasting stock returns and their risk represents one of the most important concerns of market decision makers. Although many studies have examined single classifiers of stock returns and risk methods, fusion methods, which have only recently emerged, require further study in this area. The main aim of this paper is to propose a fusion model based on the use of multiple diverse base classifiers that operate on a common input and a Meta classifier that learns from base classifiers’ outputs to obtain more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes is determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. The results demonstrate that Bagging exhibited superior performance within the fusion scheme and could achieve a maximum of 83.6% accuracy with Decision Tree, LAD Tree and Rep Tree for return prediction and 88.2% accuracy with BF Tree, DTNB and LAD Tree in risk prediction. For feature selection part, a wrapper-GA algorithm is developed and compared with the fusion model. This paper seeks to help researcher select the best individual classifiers and fuse the proper scheme in stock market prediction. To illustrate the approach, we apply it to Tehran Stock Exchange (TSE) data for the period from 2002 to 2012. © 2016 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23699S" target="_blank" >GA15-23699S: RPF a OT aplikovaná na mezinárodních finančních trzích a problému výběru portfolio</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
2017
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
90-102
Kód UT WoS článku
000394070100007
EID výsledku v databázi Scopus
2-s2.0-84995739777