Data mining approach for modeling risk assessment in computational grid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86097028" target="_blank" >RIV/61989100:27240/15:86097028 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-81-322-2202-6_61" target="_blank" >http://dx.doi.org/10.1007/978-81-322-2202-6_61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-81-322-2202-6_61" target="_blank" >10.1007/978-81-322-2202-6_61</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data mining approach for modeling risk assessment in computational grid
Popis výsledku v původním jazyce
Assessing Risk in a computational grid environment is an essential need for a user who runs applications from a remote machine on the grid, where resource sharing is the main concern. As Grid computing is the ultimate solution believed to meet the ever-expanding computational needs of organizations, analysis of the various possible risks to evaluate and develop solutions to resolve these risks is needed. For correctly predicting the risk environment, we made a comparative analysis of various machine learning modeling methods on a dataset of risk factors. First we conducted an online survey with international experts about the various risk factors associated with grid computing. Second we assigned numerical ranges to each risk factor based on a genericgrid environment. We utilized data mining tools to pick the contributing attributes that improve the quality of the risk assessment prediction process. The empirical results illustrate that the proposed framework is able to provide risk a
Název v anglickém jazyce
Data mining approach for modeling risk assessment in computational grid
Popis výsledku anglicky
Assessing Risk in a computational grid environment is an essential need for a user who runs applications from a remote machine on the grid, where resource sharing is the main concern. As Grid computing is the ultimate solution believed to meet the ever-expanding computational needs of organizations, analysis of the various possible risks to evaluate and develop solutions to resolve these risks is needed. For correctly predicting the risk environment, we made a comparative analysis of various machine learning modeling methods on a dataset of risk factors. First we conducted an online survey with international experts about the various risk factors associated with grid computing. Second we assigned numerical ranges to each risk factor based on a genericgrid environment. We utilized data mining tools to pick the contributing attributes that improve the quality of the risk assessment prediction process. The empirical results illustrate that the proposed framework is able to provide risk a
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies. Volume 33
ISBN
978-81-322-2201-9
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
12
Strana od-do
673-684
Název nakladatele
Springer
Místo vydání
New Delhi
Místo konání akce
Sambalpur
Datum konání akce
20. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—