Muzzle-based Cattle Identification using Speed up Robust Feature Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099116" target="_blank" >RIV/61989100:27240/15:86099116 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86099116
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7312056/" target="_blank" >http://ieeexplore.ieee.org/document/7312056/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/INCoS.2015.60" target="_blank" >10.1109/INCoS.2015.60</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Muzzle-based Cattle Identification using Speed up Robust Feature Approach
Popis výsledku v původním jazyce
Starting from the last century, animals identification became important for several purposes, e.g. tracking, controlling livestock transaction, and illness control. Invasive and traditional ways used to achieve such animal identification in farms or laboratories. To avoid such invasiveness and to get more accurate identification results, biometric identification methods have appeared. This paper presents an invariant biometric-based identification system to identify cattle based on their muzzle print images. This system makes use of Speeded Up Robust Feature (SURF) features extraction technique along with with minimum distance and Support Vector Machine (SVM) classifiers. The proposed system targets to get best accuracy using minimum number of SURF interest points, which minimizes the time needed for the system to complete an accurate identification. It also compares between the accuracy gained from SURF features through different classifiers. The experiments run 217 muzzle print images and the experimental results showed that our proposed approach achieved an excellent identification rate compared with other previous works.
Název v anglickém jazyce
Muzzle-based Cattle Identification using Speed up Robust Feature Approach
Popis výsledku anglicky
Starting from the last century, animals identification became important for several purposes, e.g. tracking, controlling livestock transaction, and illness control. Invasive and traditional ways used to achieve such animal identification in farms or laboratories. To avoid such invasiveness and to get more accurate identification results, biometric identification methods have appeared. This paper presents an invariant biometric-based identification system to identify cattle based on their muzzle print images. This system makes use of Speeded Up Robust Feature (SURF) features extraction technique along with with minimum distance and Support Vector Machine (SVM) classifiers. The proposed system targets to get best accuracy using minimum number of SURF interest points, which minimizes the time needed for the system to complete an accurate identification. It also compares between the accuracy gained from SURF features through different classifiers. The experiments run 217 muzzle print images and the experimental results showed that our proposed approach achieved an excellent identification rate compared with other previous works.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Intelligent Networking and Collaborative Systems IEEE INCoS 2015 : Proceedings Papers
ISBN
978-1-4673-7695-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
99-104
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Tchaj-pej
Datum konání akce
2. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380529500017