Biometric cattle identification approach based on Weber's Local Descriptor and AdaBoost classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099070" target="_blank" >RIV/61989100:27240/16:86099070 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.compag.2015.12.022" target="_blank" >http://dx.doi.org/10.1016/j.compag.2015.12.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compag.2015.12.022" target="_blank" >10.1016/j.compag.2015.12.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biometric cattle identification approach based on Weber's Local Descriptor and AdaBoost classifier
Popis výsledku v původním jazyce
In this paper, we proposed a new and robust biometric-based approach to identify head of cattle. This approach used the Weber Local Descriptor (WLD) to extract robust features from cattle muzzle print images (images from 31 head of cattle were used). It also employed the AdaBoost classifier to identify head of cattle from their WLD features. To validate the results obtained by this classifier, other two classifiers (k-Nearest Neighbor (k-NN) and Fuzzy- k-Nearest Neighbor (F. k-NN)) were used. The experimental results showed that the proposed approach achieved a promising accuracy result (approximately 99.5%) which is better than existed proposed solutions. Moreover, to evaluate the results of the proposed approach, four different assessment methods (Area Under Curve (AUC), Sensitivity and Specificity, accuracy rate, and Equal Error Rate (EER)) were used. The results of all these methods showed that the WLD along with AdaBoost algorithm gave very promising results compared to both of the k-NN and F. k-NN algorithms. (C) 2016 Elsevier B.V..
Název v anglickém jazyce
Biometric cattle identification approach based on Weber's Local Descriptor and AdaBoost classifier
Popis výsledku anglicky
In this paper, we proposed a new and robust biometric-based approach to identify head of cattle. This approach used the Weber Local Descriptor (WLD) to extract robust features from cattle muzzle print images (images from 31 head of cattle were used). It also employed the AdaBoost classifier to identify head of cattle from their WLD features. To validate the results obtained by this classifier, other two classifiers (k-Nearest Neighbor (k-NN) and Fuzzy- k-Nearest Neighbor (F. k-NN)) were used. The experimental results showed that the proposed approach achieved a promising accuracy result (approximately 99.5%) which is better than existed proposed solutions. Moreover, to evaluate the results of the proposed approach, four different assessment methods (Area Under Curve (AUC), Sensitivity and Specificity, accuracy rate, and Equal Error Rate (EER)) were used. The results of all these methods showed that the WLD along with AdaBoost algorithm gave very promising results compared to both of the k-NN and F. k-NN algorithms. (C) 2016 Elsevier B.V..
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Electronics in Agriculture
ISSN
0168-1699
e-ISSN
—
Svazek periodika
122
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
55-66
Kód UT WoS článku
000371944900006
EID výsledku v databázi Scopus
2-s2.0-84955305738