Effective EEG Feature Selection for Interpretable MDD (Major Depressive Disorder) Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149356" target="_blank" >RIV/00216305:26230/23:PU149356 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3583131.3590398" target="_blank" >https://dl.acm.org/doi/10.1145/3583131.3590398</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583131.3590398" target="_blank" >10.1145/3583131.3590398</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective EEG Feature Selection for Interpretable MDD (Major Depressive Disorder) Classification
Popis výsledku v původním jazyce
In this paper, we propose an interpretable electroencephalogram (EEG)-based solution for the diagnostics of major depressive disorder (MDD). The acquisition of EEG experimental data involved 32 MDD patients and 29 healthy controls. A feature matrix is constructed involving frequency decomposition of EEG data based on power spectrum density (PSD) using the Welch method. Those PSD features were selected, which were statistically significant. To improve interpretability, the best features are first selected from feature space via the non-dominated sorting genetic (NSGA-II) evolutionary algorithm. The best features are utilized for support vector machine (SVM), and k-nearest neighbors (k-NN) classifiers, and the results are then correlated with features to improve the interpretability. The results show that the features (gamma bands) extracted from the left temporal brain regions can distinguish MDD patients from control significantly. The proposed best solution by NSGA-II gives an average sensitivity of 93.3%, specificity of 93.4% and accuracy of 93.5%. The complete framework is published as open-source at https://github.com/ehw-fit/eeg-mdd.
Název v anglickém jazyce
Effective EEG Feature Selection for Interpretable MDD (Major Depressive Disorder) Classification
Popis výsledku anglicky
In this paper, we propose an interpretable electroencephalogram (EEG)-based solution for the diagnostics of major depressive disorder (MDD). The acquisition of EEG experimental data involved 32 MDD patients and 29 healthy controls. A feature matrix is constructed involving frequency decomposition of EEG data based on power spectrum density (PSD) using the Welch method. Those PSD features were selected, which were statistically significant. To improve interpretability, the best features are first selected from feature space via the non-dominated sorting genetic (NSGA-II) evolutionary algorithm. The best features are utilized for support vector machine (SVM), and k-nearest neighbors (k-NN) classifiers, and the results are then correlated with features to improve the interpretability. The results show that the features (gamma bands) extracted from the left temporal brain regions can distinguish MDD patients from control significantly. The proposed best solution by NSGA-II gives an average sensitivity of 93.3%, specificity of 93.4% and accuracy of 93.5%. The complete framework is published as open-source at https://github.com/ehw-fit/eeg-mdd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13001S" target="_blank" >GA21-13001S: Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference
ISBN
979-8-4007-0119-1
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1427-1435
Název nakladatele
Association for Computing Machinery
Místo vydání
Lisbon
Místo konání akce
Lisbon
Datum konání akce
15. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001031455100159