Water Pollution Detection System Based on Fish Gills as a Biomarker
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099397" target="_blank" >RIV/61989100:27240/15:86099397 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.004" target="_blank" >http://dx.doi.org/10.1016/j.procs.2015.09.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.004" target="_blank" >10.1016/j.procs.2015.09.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Water Pollution Detection System Based on Fish Gills as a Biomarker
Popis výsledku v původním jazyce
This article presents an automatic system for assessing water quality based on fish gills microscopic images. As fish gills are a good biomarker for assessing water quality, the proposed system uses fish gills microscopic images in order to detect water pollution. The proposed system consists of three phases; namely pre-processing, feature extraction, and classification phases. Since the shape is the main characteristic of fish gills microscopic images, the proposed system uses shape feature based on edge detection and wavelets transform for classifying the water-quality degree. Furthermore, it implemented Principal Components Analysis (PCA) along with Support Vector Machines (SVMs) algorithms for feature extraction and water quality degree classification. The datasets used for experiments were constructed based on real sample images for fish gills. Training dataset is divided into four classes representing the different histopathological changes and the corresponding water quality degrees. Experimental results showed that the proposed classification system has obtained water quality classification accuracy of 95.41%, using the SVMs linear kernel function and 10-fold cross validation with 37 images per class for training. (C) 2015 The Authors
Název v anglickém jazyce
Water Pollution Detection System Based on Fish Gills as a Biomarker
Popis výsledku anglicky
This article presents an automatic system for assessing water quality based on fish gills microscopic images. As fish gills are a good biomarker for assessing water quality, the proposed system uses fish gills microscopic images in order to detect water pollution. The proposed system consists of three phases; namely pre-processing, feature extraction, and classification phases. Since the shape is the main characteristic of fish gills microscopic images, the proposed system uses shape feature based on edge detection and wavelets transform for classifying the water-quality degree. Furthermore, it implemented Principal Components Analysis (PCA) along with Support Vector Machines (SVMs) algorithms for feature extraction and water quality degree classification. The datasets used for experiments were constructed based on real sample images for fish gills. Training dataset is divided into four classes representing the different histopathological changes and the corresponding water quality degrees. Experimental results showed that the proposed classification system has obtained water quality classification accuracy of 95.41%, using the SVMs linear kernel function and 10-fold cross validation with 37 images per class for training. (C) 2015 The Authors
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science. Volume 65
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
11
Strana od-do
601-611
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Praha
Datum konání akce
20. 4. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—