Multi-class SVM based classification approach for tomato ripeness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86096569" target="_blank" >RIV/61989100:27240/14:86096569 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-01781-5_17" target="_blank" >http://dx.doi.org/10.1007/978-3-319-01781-5_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-01781-5_17" target="_blank" >10.1007/978-3-319-01781-5_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-class SVM based classification approach for tomato ripeness
Popis výsledku v původním jazyce
This article presents a content-based image classification system to monitor the ripeness process of tomato via investigating and classifying the different maturity/ripeness stages. The proposed approach consists of three phases; namely pre-processing, feature extraction, and classification phases. Since tomato surface color is the most important characteristic to observe ripeness, this system uses colored histogram for classifying ripeness stage. It implements Principal Components Analysis (PCA) alongwith Support Vector Machine (SVM) algorithms for feature extraction and classification of ripeness stages, respectively. The datasets used for experiments were constructed based on real sample images for tomato at different stages, which were collected from a farm at Minia city. Datasets of 175 images and 55 images were used as training and testing datasets, respectively. Training dataset is divided into 5 classes representing the different stages of tomato ripeness. Experimental results
Název v anglickém jazyce
Multi-class SVM based classification approach for tomato ripeness
Popis výsledku anglicky
This article presents a content-based image classification system to monitor the ripeness process of tomato via investigating and classifying the different maturity/ripeness stages. The proposed approach consists of three phases; namely pre-processing, feature extraction, and classification phases. Since tomato surface color is the most important characteristic to observe ripeness, this system uses colored histogram for classifying ripeness stage. It implements Principal Components Analysis (PCA) alongwith Support Vector Machine (SVM) algorithms for feature extraction and classification of ripeness stages, respectively. The datasets used for experiments were constructed based on real sample images for tomato at different stages, which were collected from a farm at Minia city. Datasets of 175 images and 55 images were used as training and testing datasets, respectively. Training dataset is divided into 5 classes representing the different stages of tomato ripeness. Experimental results
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 237
ISBN
978-3-319-01780-8
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
12
Strana od-do
175-186
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Ostrava
Datum konání akce
22. 8. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—