Random neural network model for supervised learning problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099398" target="_blank" >RIV/61989100:27240/15:86099398 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86099398
Výsledek na webu
<a href="http://nnw.cz/doi/2015/NNW.2015.25.024.pdf" target="_blank" >http://nnw.cz/doi/2015/NNW.2015.25.024.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2015.25.024" target="_blank" >10.14311/NNW.2015.25.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Random neural network model for supervised learning problems
Popis výsledku v původním jazyce
Random Neural Networks (RNNs) are a class of Neural Networks (NNs) that can also be seen as a specific type of queuing network. They have been successfully used in several domains during the last 25 years, as queuing networks to analyze the performance of resource sharing in many engineering areas, as learning tools and in combinatorial optimization, where they are seen as neural systems, and also as models of neurological aspects of living beings. In this article we focus on their learning capabilities, and more specifically, we present a practical guide for using the RNN to solve supervised learning problems. We give a general description of these models using almost indistinctly the terminology of Queuing Theory and the neural one. We present the standard learning procedures used by RNNs, adapted from similar well-established improvements in the standard NN field. We describe in particular a set of learning algorithms covering techniques based on the use of first order and, then, of second order derivatives. We also discuss some issues related to these objects and present new perspectives about their use in supervised learning problems. The tutorial describes their most relevant applications, and also provides a large bibliography. (C) CTU FTS 2015.
Název v anglickém jazyce
Random neural network model for supervised learning problems
Popis výsledku anglicky
Random Neural Networks (RNNs) are a class of Neural Networks (NNs) that can also be seen as a specific type of queuing network. They have been successfully used in several domains during the last 25 years, as queuing networks to analyze the performance of resource sharing in many engineering areas, as learning tools and in combinatorial optimization, where they are seen as neural systems, and also as models of neurological aspects of living beings. In this article we focus on their learning capabilities, and more specifically, we present a practical guide for using the RNN to solve supervised learning problems. We give a general description of these models using almost indistinctly the terminology of Queuing Theory and the neural one. We present the standard learning procedures used by RNNs, adapted from similar well-established improvements in the standard NN field. We describe in particular a set of learning algorithms covering techniques based on the use of first order and, then, of second order derivatives. We also discuss some issues related to these objects and present new perspectives about their use in supervised learning problems. The tutorial describes their most relevant applications, and also provides a large bibliography. (C) CTU FTS 2015.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
25
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
42
Strana od-do
457-499
Kód UT WoS článku
000365835300001
EID výsledku v databázi Scopus
2-s2.0-84987722729