A performance study of random neural network as supervised learning tool using CUDA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099060" target="_blank" >RIV/61989100:27240/16:86099060 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86099060
Výsledek na webu
<a href="http://dx.doi.org/10.6138/JIT.2016.17.4.20141014d" target="_blank" >http://dx.doi.org/10.6138/JIT.2016.17.4.20141014d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.6138/JIT.2016.17.4.20141014d" target="_blank" >10.6138/JIT.2016.17.4.20141014d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A performance study of random neural network as supervised learning tool using CUDA
Popis výsledku v původním jazyce
The Graphics Processing Units (GPUs) have been used for accelerating graphic calculations as well as for developing more general devices. One of the most used parallel platforms is the Compute Unified Device Architecture (CUDA), which allows implementing in parallel multiple GPUs obtaining a high computational performance. Over the last years, CUDA has been used for the implementation of several parallel distributed systems. At the end of the 80s, it was introduced a type of Neural Networks (NNs) inspired of the behavior of queueing networks named Random Neural Networks (RNN). The method has been successfully used in the Machine Learning community for solving many learning benchmark problems. In this paper, we implement in CUDA the gradient descent algorithm for optimizing a RNN model. We evaluate the performance of the algorithm on two real benchmark problems about energy sources. In addition, we present a comparison between the parallel implement in CUDA and the traditional implementation in C programming language. (C) 2016, Taiwan Academic Network Management Committee. All rights reserved.
Název v anglickém jazyce
A performance study of random neural network as supervised learning tool using CUDA
Popis výsledku anglicky
The Graphics Processing Units (GPUs) have been used for accelerating graphic calculations as well as for developing more general devices. One of the most used parallel platforms is the Compute Unified Device Architecture (CUDA), which allows implementing in parallel multiple GPUs obtaining a high computational performance. Over the last years, CUDA has been used for the implementation of several parallel distributed systems. At the end of the 80s, it was introduced a type of Neural Networks (NNs) inspired of the behavior of queueing networks named Random Neural Networks (RNN). The method has been successfully used in the Machine Learning community for solving many learning benchmark problems. In this paper, we implement in CUDA the gradient descent algorithm for optimizing a RNN model. We evaluate the performance of the algorithm on two real benchmark problems about energy sources. In addition, we present a comparison between the parallel implement in CUDA and the traditional implementation in C programming language. (C) 2016, Taiwan Academic Network Management Committee. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Internet Technology
ISSN
1607-9264
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
8
Strana od-do
771-778
Kód UT WoS článku
000386063100017
EID výsledku v databázi Scopus
2-s2.0-84989354504