Retinal Blood Vessel Segmentation Approach Based on Mathematical Morphology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099400" target="_blank" >RIV/61989100:27240/15:86099400 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1877050915028355?via%3Dihub" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1877050915028355?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.005" target="_blank" >10.1016/j.procs.2015.09.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retinal Blood Vessel Segmentation Approach Based on Mathematical Morphology
Popis výsledku v původním jazyce
Diabetic retinopathy is a disease, which forms a severe threat on sight. It may reach to blindness among working age people. By analyzing and detecting of vasculature structures in retinal images, we can early detect the diabetes in advanced stages by comparison of its states of retinal blood vessels. In this paper, we present blood vessel segmentation approach, which can be used in computer based retinal image analysis to extract the retinal image vessels. Mathematical morphology and K-means clustering are used to segment the vessels. To enhance the blood vessels and suppress the background information, we perform smoothing operation on the retinal image using mathematical morphology. Then the enhanced image is segmented using K-means clustering algorithm. The proposed approach is tested on the DRIVE dataset and is compared with alternative approaches. Experimental results obtained by the proposed approach showed that it is effective as it achieved average accuracy of 95.10% and best accuracy of 96.25%. (C) 2015 The Authors.
Název v anglickém jazyce
Retinal Blood Vessel Segmentation Approach Based on Mathematical Morphology
Popis výsledku anglicky
Diabetic retinopathy is a disease, which forms a severe threat on sight. It may reach to blindness among working age people. By analyzing and detecting of vasculature structures in retinal images, we can early detect the diabetes in advanced stages by comparison of its states of retinal blood vessels. In this paper, we present blood vessel segmentation approach, which can be used in computer based retinal image analysis to extract the retinal image vessels. Mathematical morphology and K-means clustering are used to segment the vessels. To enhance the blood vessels and suppress the background information, we perform smoothing operation on the retinal image using mathematical morphology. Then the enhanced image is segmented using K-means clustering algorithm. The proposed approach is tested on the DRIVE dataset and is compared with alternative approaches. Experimental results obtained by the proposed approach showed that it is effective as it achieved average accuracy of 95.10% and best accuracy of 96.25%. (C) 2015 The Authors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science. Volume 65
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
11
Strana od-do
612-622
Název nakladatele
Elsevier
Místo vydání
New York
Místo konání akce
Praha
Datum konání akce
20. 4. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—