GPU Particle Swarm Optimization Applied to Travelling Salesman Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86100170" target="_blank" >RIV/61989100:27240/15:86100170 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/MCSoC.2015.18" target="_blank" >http://dx.doi.org/10.1109/MCSoC.2015.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MCSoC.2015.18" target="_blank" >10.1109/MCSoC.2015.18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPU Particle Swarm Optimization Applied to Travelling Salesman Problem
Popis výsledku v původním jazyce
Recently, the Graphic Processing Unit (GPUs) are used as an exciting new hardware environment for truly parallel implementation and execution of nature and Bio-inspired algorithms thanks to their excellent price-to-power ratio. Indeed, they are represented by the software platform using compute unified device architecture from NVIDIA, and the one of particle swarm optimization (PSO) which can be executed simultaneously on GPUs to speed up complex optimization problems such as Travelling Salesman Problem (TSP). In this paper, we illustrate a novel parallel approach to run standard particle swarm optimization PSO on GPUs and applied to TSP (GPU-PSO-A-TSP). Both the developed and the previous PSO centroid algorithm are implemented on the GPUs. The achieved results show that we have obtained at least one order of magnitude difference between speed of the GPUs and a typical sequential CPU implementation for performance optimization. Results show also that running speed of GPU-PSO is four times as fast as that of CPUP-SO.
Název v anglickém jazyce
GPU Particle Swarm Optimization Applied to Travelling Salesman Problem
Popis výsledku anglicky
Recently, the Graphic Processing Unit (GPUs) are used as an exciting new hardware environment for truly parallel implementation and execution of nature and Bio-inspired algorithms thanks to their excellent price-to-power ratio. Indeed, they are represented by the software platform using compute unified device architecture from NVIDIA, and the one of particle swarm optimization (PSO) which can be executed simultaneously on GPUs to speed up complex optimization problems such as Travelling Salesman Problem (TSP). In this paper, we illustrate a novel parallel approach to run standard particle swarm optimization PSO on GPUs and applied to TSP (GPU-PSO-A-TSP). Both the developed and the previous PSO centroid algorithm are implemented on the GPUs. The achieved results show that we have obtained at least one order of magnitude difference between speed of the GPUs and a typical sequential CPU implementation for performance optimization. Results show also that running speed of GPU-PSO is four times as fast as that of CPUP-SO.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International symposium on embedded multicore/manycore systems-on-chip (MCSoC) : proceedings
ISBN
978-1-4799-8670-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
112-119
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Turín
Datum konání akce
23. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380390400015