Efficient solution of time-domain boundary integral equations arising in sound-hard scattering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86094686" target="_blank" >RIV/61989100:27240/16:86094686 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86094686
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/nme.5187/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/nme.5187/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5187" target="_blank" >10.1002/nme.5187</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient solution of time-domain boundary integral equations arising in sound-hard scattering
Popis výsledku v původním jazyce
We consider the efficient numerical solution of the three-dimensional wave equation with Neumann boundary conditions via time-domain boundary integral equations. A space-time Galerkin method with Coo-smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time.
Název v anglickém jazyce
Efficient solution of time-domain boundary integral equations arising in sound-hard scattering
Popis výsledku anglicky
We consider the efficient numerical solution of the three-dimensional wave equation with Neumann boundary conditions via time-domain boundary integral equations. A space-time Galerkin method with Coo-smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
ISSN
0029-5981
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
430-449
Kód UT WoS článku
000380021000005
EID výsledku v databázi Scopus
2-s2.0-84954285490