Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-organizing map classifier for stressed speech recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098030" target="_blank" >RIV/61989100:27240/16:86098030 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://spie.org/Publications/Proceedings/Paper/10.1117/12.2224253" target="_blank" >http://spie.org/Publications/Proceedings/Paper/10.1117/12.2224253</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2224253" target="_blank" >10.1117/12.2224253</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-organizing map classifier for stressed speech recognition

  • Popis výsledku v původním jazyce

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility. (C) 2016 SPIE.

  • Název v anglickém jazyce

    Self-organizing map classifier for stressed speech recognition

  • Popis výsledku anglicky

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility. (C) 2016 SPIE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of SPIE - The International Society for Optical Engineering

  • ISBN

    978-1-5106-0091-1

  • ISSN

    0277-786X

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

  • Název nakladatele

    SPIE

  • Místo vydání

    Baltimore

  • Místo konání akce

    Baltimore

  • Datum konání akce

    17. 4. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku