A substitution of the general partial differential equation with extended polynomial networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099062" target="_blank" >RIV/61989100:27240/16:86099062 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7727833" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7727833</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2016.7727833" target="_blank" >10.1109/IJCNN.2016.7727833</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A substitution of the general partial differential equation with extended polynomial networks
Popis výsledku v původním jazyce
General partial differential equations, which can describe any complex functions, may be solved by an adapted method of the similarity analysis that models polynomial data relations of discrete observations. The proposed new differential polynomial networks define and substitute for a selective form of the general partial differential equation using fraction derivative units to model an unknown system or pattern. Convergent series of relative derivative substitution terms, produced in all network layers, describe the partial derivative changes of some combinations of input variables to generalize elementary polynomial data relations. The general differential equation is decomposed into polynomial network backward structure, which defines simple and composite sum derivative terms in respect of previous layers variables. The proposed method enables to form more complex and varied derivative selective series models than standard soft-computing techniques. The sigmoidal function, commonly employed as an activation function in artificial neurons, may improve the abilities of the polynomial networks and substituting derivative terms to approximate complicated periodic multi-variable or time-series functions in a system model. (C) 2016 IEEE.
Název v anglickém jazyce
A substitution of the general partial differential equation with extended polynomial networks
Popis výsledku anglicky
General partial differential equations, which can describe any complex functions, may be solved by an adapted method of the similarity analysis that models polynomial data relations of discrete observations. The proposed new differential polynomial networks define and substitute for a selective form of the general partial differential equation using fraction derivative units to model an unknown system or pattern. Convergent series of relative derivative substitution terms, produced in all network layers, describe the partial derivative changes of some combinations of input variables to generalize elementary polynomial data relations. The general differential equation is decomposed into polynomial network backward structure, which defines simple and composite sum derivative terms in respect of previous layers variables. The proposed method enables to form more complex and varied derivative selective series models than standard soft-computing techniques. The sigmoidal function, commonly employed as an activation function in artificial neurons, may improve the abilities of the polynomial networks and substituting derivative terms to approximate complicated periodic multi-variable or time-series functions in a system model. (C) 2016 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Joint Conference on Neural Networks
ISBN
978-1-5090-0619-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
4819-4826
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
24. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—