Speed estimators using stator resistance adaption for sensorless induction motor drive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099927" target="_blank" >RIV/61989100:27240/16:86099927 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.15598/aeee.v14i3.1732" target="_blank" >http://dx.doi.org/10.15598/aeee.v14i3.1732</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v14i3.1732" target="_blank" >10.15598/aeee.v14i3.1732</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speed estimators using stator resistance adaption for sensorless induction motor drive
Popis výsledku v původním jazyce
The paper describes speed estimators for a speed sensorless induction motor drive with the direct torque and flux control. However, the accuracy of the direct torque control depends on the correct information of the stator resistance, because its value varies with working conditions of the induction motor. Hence, a stator resistance adaptation is necessary. Two techniques were developed for solving this problem: model reference adaptive system based scheme and artificial neural network based scheme. At first, the sensorless control structures of the induction motor drive were implemented in Matlab-Simulink environment. Then, a comparison is done by evaluating the rotor speed difference. The simulation results confirm that speed estimators and adaptation techniques are simple to simulate and experiment. By comparison of both speed estimators and both adaptation techniques, the current based model reference adaptive system estimator with the artificial neural network based adaptation technique gives higher accuracy of the speed estimation.
Název v anglickém jazyce
Speed estimators using stator resistance adaption for sensorless induction motor drive
Popis výsledku anglicky
The paper describes speed estimators for a speed sensorless induction motor drive with the direct torque and flux control. However, the accuracy of the direct torque control depends on the correct information of the stator resistance, because its value varies with working conditions of the induction motor. Hence, a stator resistance adaptation is necessary. Two techniques were developed for solving this problem: model reference adaptive system based scheme and artificial neural network based scheme. At first, the sensorless control structures of the induction motor drive were implemented in Matlab-Simulink environment. Then, a comparison is done by evaluating the rotor speed difference. The simulation results confirm that speed estimators and adaptation techniques are simple to simulate and experiment. By comparison of both speed estimators and both adaptation techniques, the current based model reference adaptive system estimator with the artificial neural network based adaptation technique gives higher accuracy of the speed estimation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TE02000103" target="_blank" >TE02000103: Centrum inteligentních pohonů a pokročilého řízení strojů (CIDAM)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
267-273
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84988943370