Small-world hidden in differential evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86100212" target="_blank" >RIV/61989100:27240/16:86100212 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CEC.2016.7744214" target="_blank" >http://dx.doi.org/10.1109/CEC.2016.7744214</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2016.7744214" target="_blank" >10.1109/CEC.2016.7744214</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small-world hidden in differential evolution
Popis výsledku v původním jazyce
Differential evolution is an effective population-based global optimizer which is used in many areas of research. The population consists of individuals, which are mutated, crossed and better of them survive to the next generation. In this paper, we look at this process as at the communication between individuals which can be modeled by the network where the individuals are represented by the nodes and the edges between them reflect the dynamics in the population, i.e. interactions between individuals. The main goal of this work is to find out if the differential evolution algorithm is able to create the networks where the small-world phenomenon (known as six degrees of separation) is observed. The secondary objective was to investigate the dependency between the type of the selected test function and the extent of this phenomenon. To evaluate the performance of the algorithm eleven test functions from the benchmark set CEC 2015 have been used. The analysis of the generated networks indicates that the differential evolution is able to create small-world networks in majority of test functions. As the result, the selected test functions can be classified into three categories which binds to the degree of cooperation between the individuals in the population
Název v anglickém jazyce
Small-world hidden in differential evolution
Popis výsledku anglicky
Differential evolution is an effective population-based global optimizer which is used in many areas of research. The population consists of individuals, which are mutated, crossed and better of them survive to the next generation. In this paper, we look at this process as at the communication between individuals which can be modeled by the network where the individuals are represented by the nodes and the edges between them reflect the dynamics in the population, i.e. interactions between individuals. The main goal of this work is to find out if the differential evolution algorithm is able to create the networks where the small-world phenomenon (known as six degrees of separation) is observed. The secondary objective was to investigate the dependency between the type of the selected test function and the extent of this phenomenon. To evaluate the performance of the algorithm eleven test functions from the benchmark set CEC 2015 have been used. The analysis of the generated networks indicates that the differential evolution is able to create small-world networks in majority of test functions. As the result, the selected test functions can be classified into three categories which binds to the degree of cooperation between the individuals in the population
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Congress on Evolutionary Computation, CEC 2016
ISBN
978-1-5090-0622-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
3354-3361
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
24. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000390749103070